### Summary

- The Chinese government is considering two potential policy approaches for managing national energy use and associated carbon emissions in future Five-Year Plans (FYP): an energy intensity target and an energy cap. This study is focused on examining the effect of migration on these two policies.
- > China is experiencing large interprovincial migration. (Box 2)
- > Large share of migration is from energy intensive provinces to 'cleaner' provinces. (Box 3)
- > To examine the effect of migration on policies, we combined the China Regional Energy Model (C-REM) with an econometric migration model. (Box 3, 4 & 5)
- > The model predicts future interprovincial migration to rapidly peak by 2015-2020, but remain important. (Box 6)
- $\succ$  If migration is ignored or underestimated in the design of the policies, the energy cap will put more burden on eastern China and energy intensity targets will put more burden on middle and west. We compare the two policies under uncertain migration and find the energy intensity target to be more robust. (Box 7 &
- > Future work will focus on estimating the impact of urbanisation (Box 9)



Net interprovincial migration between 2005-2010 Largest interprovincial migration flows are from the middle provinces to the eastern coastal provinces.

### Migration prediction model

In*Migration*<sub>i.o.t</sub>

 $(Population_{i,t-1}) + a_2 \ln(-)$  $(Population_{o,t-1}) + a_3 \ln(\tilde{\cdot})$ \_GDPpercapita<sub>i,t-1</sub>  $= a_0 + a_1 \ln(\frac{1}{Population_{i,t-2}})$ GDPpercapita<sub>i.t-2</sub> *Population*<sub>o,t-2</sub>  $+ a_4 \ln(\frac{GDPpercapita_{o,t-1}}{GDPpercapita_{o,t-2}}) + a_5 \ln Migration_{i,o,t-1}$ 

| Mt               | Coefficient | Std. Err. | t-value | Lower 95% | Upper 95% |
|------------------|-------------|-----------|---------|-----------|-----------|
| Pi               | 1.249***    | 0.375     | 3.33    | 0.515     | 1.983     |
| p <sub>o</sub>   | -0.255      | 0.670     | -0.38   | -1.568    | 1.058     |
| <b>g</b> i       | 1.116***    | 0.256     | 4.36    | 0.614     | 1.617     |
| g <sub>o</sub>   | -1.976***   | 0.260     | -7.59   | -2.486    | -1.466    |
| M <sub>t-1</sub> | 0.925***    | 0.010     | 91.44   | 0.905     | 0.945     |

Panel dataset: two time periods (2000-2005, 2005-2010), 1740 bilateral migration flows.  $R^2 = 0.9553.$ 

Conclusion: Provinces with a higher GDP per capita growth rate and higher net in-migration shows more attraction for migration.

C-REM is a multi-regional, multi-sector, recursive-dynamic, computable general equilibrium (CGE) model. The model is one of the major analysis tools developed by the China Energy and Climate Project (CECP). The primary goal of the model is to analyze the impact of existing and proposed energy and climate polices of China on technology, inter-fuel competition, the environment, and the economy. The model details 30 provinces of China. Since migration in China is large, combining C-REM with a migration model results in much stronger analytical capacity.

provincial IO table, resource and energy data from Chinese National Statistic Bureau. This study is the first dynamic implementation of the model. The model steps are 2007, 2010, 2015 and 2020. We use 2010 data to calibrate the model.

Trade between regions follows the Armington assumption (including electricity transport).

3

# How might interprovincial migration affect the impact of China's energy policies?

Xiaohu Luo<sup>1,2</sup>,\* Zhang Da<sup>1,2</sup> Justin G. Caron<sup>2</sup> Zhang Xiliang<sup>1</sup> Valerie J. Karplus<sup>2</sup> <sup>1</sup>Institute of Energy, Environment & Economy, Tsinghua University, Beijing, China <sup>2</sup>Joint Program on the Science & Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA

## China Regional Energy Model (C-REM)

The sectorial and regional aggregation is shown below:

| China Regions (Off | icial two letter abbre             | viation)         | Sector | Sector aggregated                                   |
|--------------------|------------------------------------|------------------|--------|-----------------------------------------------------|
| BJ (Beijing)       | ZJ (Zhejiang)                      | HI (Hainan)      | COL    | Coal mining and processing                          |
| FJ (Tianjin)       | AH (Anhui)                         | CQ (Chongqing)   | CRU    | Crude petroleum products                            |
| HE (Hebei)         | FJ (Fujian)                        | SC (Sichuan)     | GAS    | natural gas products                                |
| SX (Shanxi)        | JX (Jiangxi)                       | GZ (Guizhou)     | OIL    | Petroleum refining, coking and nuclear fuels        |
| NM (Mongolia)      | SD (Shandong)                      | YN (Yunnan)      | EIS    | Energy intensive industries                         |
| N (Liaoning)       | HA (Henan)                         | SN (Shaanxi)     | MAN    | Other manufacturing industries                      |
| IL (Jilin)         | HB (Hubei)                         | GS (Gansu)       | ELE    | Electricity and heat                                |
| HL (Heilongjiang)  | HN (Hunan)                         | QH (Qinghai)     | WTR    | Water                                               |
| SH (Shanghai)      | GD (Guangdong)                     | NX (Ningxia)     | CON    | Construction                                        |
| IS (Jiangsu)       | GX (Guangxi)                       | XJ (Xinjiang)    | TRN    | Transport and Post                                  |
| Other Regions      | Regions aggregated                 |                  | SER    | Service                                             |
| USA                | United States                      |                  | OMN    | Metal minerals mining and Non-metal minerals and    |
|                    |                                    |                  |        | other mining                                        |
| EUR                | Europe                             |                  | AGR    | Crop cultivation, Forestry, Livestock and livestock |
|                    |                                    |                  |        | products and Fishery                                |
| ODC                | Other Developed countries: Canada, |                  |        |                                                     |
|                    | Australia, New Zea                 | aland, Japan and |        |                                                     |
|                    | South Korea                        |                  |        |                                                     |
| ROW                | Rest of the World                  |                  |        |                                                     |
|                    |                                    |                  | 1      | 1                                                   |

Base year data: 2007 world IO table from GTAP database,

Energy consumption is defined as direct secondary energy use.

### Combination of the two models



The combination of the two models uses a recursive dynamic mechanism. Changes in population predicted by the migration model will determine the labor supply in the economic model. Because of limited data availability, we assume migration does not affect the average labor productivity and labor participation.

**d** 90.0 **S** 80.0 60.0 **b** 50.0 **6** 40.0

Total interprovincial migration will peak in 2010-2015 at around 90 million. The predicted decline in total migration is caused by diminishing wage differentials, as the GDP growth rates in outmigration provinces are higher than in the in-migration provinces (shown below).





Migration will affect both the energy consumption and GDP in each province, but changes in GDP are larger. Thus it will impact both energy cap and energy intensity policies. Energy intensity is predicted to decrease in the in-migration provinces of the east and increase in the out-migration provinces. More burden will put on the east under an energy cap, whereas an intensity target puts more burden on the west



### Migration results



### Policy robustness analysis

We define three scenarios to compare the robustness of the policies: 1. No Migration (ENM). We design both the energy cap and energy intensity policies such that they are identical if no migration takes place, and reflect the 12<sup>th</sup> FYP.

6

- migration.

### Year Scenarios GDP (billion 20 Energy consu inergy mier El reduction o Welfare chang 2010(%)

At national level: Energy intensity targets will lead to higher GDP and lower energy consumption, and thus dominates the energy cap overall. There are several reasons for this:

- policy design.

At provincial level: Comparing the welfare change between these two scenarios, we find that the energy intensity targets lead to smaller deviations and are thus more robust than caps (see below)



### Future research

### The 37th IAEE International Conference, 15-18 June 2014, New York City

8

2. Energy Cap policy With Migration (ECM). This scenario imposes the same provincial energy caps as in (1) and adds

3. Energy Intensity policy with Migration (EIM). This scenario imposes the same provincial energy intensity targets as in (1) and adds migration.

|                     | 2007 | 2010 | 2015  |       | 2020  |       |       |       |
|---------------------|------|------|-------|-------|-------|-------|-------|-------|
|                     | Data | Data | ENM   | ECM   | EIM   | ENM   | ECM   | EIM   |
| 7\$)                | 3644 | 5148 | 7116  | 7192  | 7193  | 9453  | 9505  | 9520  |
| ption (million tce) | 2474 | 3296 | 3867  | 3867  | 3864  | 4356  | 4356  | 4319  |
| /                   | 0.68 | 0.64 | 0.54  | 0.54  | 0.54  | 0.46  | 0.46  | 0.45  |
| er five years (%)   |      | 5.67 | 15.12 | 15.12 | 16.11 | 15.21 | 15.21 | 15.53 |
| relative to         |      |      | -0.42 | -0.55 | -0.44 | -1.69 | -2.02 | -1.78 |

1. Fixed energy resources are mostly located in the out-migration middle and west. Energy intensive industries will not move out of these provinces as fast as the migrants.

2. The east is richer than middle and west. If facing a tough target, it will have a better chance to move its heavy industries to the middle and west, which is against the original intention of the

3. The industrial structure of middle and east is different. If people move to the east, they will more likely work in a less energy intensive sector, e.g. service sector.

4. Energy use reductions are cheaper in the middle and west.

> Changes in household energy consumption patterns associated with migration and income changes.

 $\succ$  Investigate the impact of the urbanization process on energy consumption and energy policy design.