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Abstract 

Many important policy initiatives, such as imposing carbon tax, would directly affect the 

operation of electric power networks.  Evaluating such policies often requires models of 

how the proposed policy will impact system operations.  Predictive modeling of electric 

transmission systems, particularly in the face of transmission constraints, is difficult unless 

the analyst possesses a detailed network model.  Further, policy analysis must often be 

performed under time constraints, which may prevent the use of complex engineering 

models. 

Our motivation in this paper is to develop a method for estimating zonal supply curves 

in transmission-constrained electricity markets that can be implemented quickly by policy 

analysts with training in statistical methods (but not necessarily engineering) and with 

publicly-available data.  We develop a fuzzy nonlinear statistical model that uses fuel prices 

and zonal electric loads to determine piecewise supply curves, each segment of which 

represents the influence of a particular fuel type on the zonal electricity price.  The domain 

belonging to different fuels can overlap, which means a mixture of two fuels can be 

marginal. The magnitude of this overlap is a function of the relative fuel prices. Our 

problem thus requires the simultaneous estimation of the slope of each supply-curve 

segment, thresholds that define the endpoints of each segment and the level of marginal 

fuel overlap. 
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We illustrate our methodology by estimating zonal supply curves for the seventeen 

utility zones in the PJM system.  We use then our supply curves to estimate regional 

impacts of Pennsylvania’s legislative requirement that utilities in Pennsylvania to reduce 

annual and peak electric load.  For most utilities in Pennsylvania, successful 

implementation of this requirement would reduce the influence of natural gas on electricity 

price formation and increase the influence of coal.  The total resulted savings would be 

around 333 million dollars under the most probable future fuel price scenario. We also 

analyze the impact of imposing a $30/ton tax on Carbon dioxide. Our results show that the 

policy would increase the average prices in PJM by around 70 percent under the same 

future scenario. Besides more natural gas and less coal would be used. 

1. Introduction 

Analysis of many policy initiatives is not possible without having a reliable economic 

model of the power grid. Therefore development of models estimating prices and fuel 

utilization is a necessary step towards analyzing policies such as energy conservation or 

carbon tax. The North American power transmission grid has been called “the largest and 

most complex machine in the world” (Amin, 2004). Detailed modeling of the system 

requires complete engineering data on every element of the grid such as transmission lines, 

transformers and generators (PTDF, as presented by Wood and Wollenberg, 1994).  Such 

data is not publically available and requires very complex engineering modeling which is 

not very suitable for policy analysts.  

Our motivation is to use only the publically available data and account for the 

transmission system constraints. We use zonal loads, zonal electricity and fuel prices to 

construct zonal supply curves. The results of our model provide information on electricity 

prices and fuel utilization. By employing fuzzy thresholds for switching marginal fuel our 

model is able to forecast the conditions under which a mixture of two fuels is marginal.  
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There are several methods in the literature for forecasting short term electricity prices. 

The existing methods include probabilistic estimation of price duration curves (Valenzuela 

and Mazumdar, 2005), short term forecast with fuzzy neural networks (Amjady, 2006), 

transfer functions (Nogales and Conejo, 2006), linear and nonlinear time series (Kian and 

Keyhani, 2001; Misiorek et al, 2006). These methods are invented to forecast very short 

term prices from hours to a week ahead. They may forecast the prices very well but cannot 

be used in policy analysis where estimation over longer periods of time is needed. 

Equilibrium models such as (Ruibal and Mazumdar, 2008) are suitable for providing 

insights about how the players can raise the prices. But they cannot be applied directly to 

the real markets because the model requires detailed cost information. The model also 

neglects transmission constraints. 

Usually policy analysts gather information on individual power plants from e-GRID 

database. They also collect fuel prices and construct a simple dispatch curve by sorting the 

plants from cheapest to the most expensive ignoring the transmission system. This 

approach is more or less used in (Borenstein et al., 2002) and (Joskow and Kahn, 2001) to 

study the California electricity crisis. They used the dispatch curve to see whether the firms 

exercised market power during summer 2000 or not. As stated before both of the models 

ignore existence of transmission system and its constraints. Similar method is used in many 

other policy relevant studies (e.g., Mansur and Holland, 2006; Apt, et al., 2008; Newcomer, 

et al., 2008; Newcomer and Apt, 2009; Blumsack, 2009; Dowds, et al., 2010). 

Figure 1 shows the dispatch curve for PJM and is calculated similar to (Newcomer, et al., 

2008). It suggests that different technologies have separate sections in the supply curve. 
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However development of Marcellus Shale project has led to lower natural gas prices and 

the prices are expected to fall further in the future. Figure 2 shows the trend of coal, gas 

and oil prices for electric power industry since January 2006. 

 

Figure 1: Dispatch curve for PJM using the following fuel prices: Coal: $2/MMBTU, Gas: $2/MMBTU, Oil: 

$15/MMBTU. This set of prices is similar to the situation in late 2008. 
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Figure 2: Fuel price trends since January 2006. 

 Thus the traditional view that the coal fired power plants are dispatched before the 

natural gas fired plants no longer holds. It is expected to see more gas used for serving the 

base load as the electricity generated by efficient combined cycled gas power plant will 

become cheaper than some coal fired plants. Figure 3 shows the same dispatch curve 

shown in Figure 1 with expected future fuel prices.  

The figure shows that the coal and gas plants are not separated anymore. The parts 

related to these technologies overlap. However by changing the order of the power plants 

the mean of the mixed area remains around 165 GW which is the point of separation 

between natural gas and coal in Figure 1. With further falling of the gas prices the band 

where a mixture of coal and gas is marginal will become wider. Moreover policies which 

make coal relatively more expensive than natural gas such as carbon tax will also widen the 

fuzzy band.  
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Figure 3: Dispatch curve for PJM using the following fuel prices: Coal: $2/MMBTU, Gas:  $3/MMBTU, Oil: $20 

/MMBTU. Increase in relative coal to gas price resulted in a region where a mixture of coal and gas is marginal. 

In this paper we use fuzzy thresholds for transition between the zonal marginal fuels to 

capture the mixed marginal fuel. This research can facilitate more accurate analysis of 

policy related to the operation of electric power system. Our model gives fuzzy information 

about the marginal fuel and specifies whether a single fuel or a mixture of two is on the 

margin. The rest of this paper is organized as follows: section 2 describes the methodology. 

The results of the model applied to seventeen utility zones of PJM are presented in section 

3. Section 4 includes the simulation of Pennsylvania act 129 and a carbon tax policy, and 

finally section 5 concludes the paper. 
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2. Methodology 

The existence of transmission constraints implies different locational prices in an 

electricity network (Wu et al. 1996). Therefore modeling transmission congestion is 

essential in accurate estimation of the prices. Our model enables the estimation of zonal 

electricity supply curves and accounts for zonal price differences. 

We model the zonal marginal fuel as a function of the relevant zone, system-wide load 

and relative fuel prices. Then we assign a separate supply curve to each fuel which depends 

only on the relevant fuel price and load. The electricity prices are calculated based on the 

membership functions relating each observation to the marginal fuels. Our approach is to 

minimize the sum of squared errors in the following equation: 





J

j

ik

F
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The subscript i represents the zone i, j indicates the fuel j, and k is the number of the 

observation. Mj is the membership function specifying how much fuel j is on the margin at 

the zone i. pik is the zonal electricity price, F

ikp


is the vector of zonal fuel prices and qik is the 

zonal load. For the sake of simplicity we use           in our formulation to account for 

demand in other zones of the market. SFij is the partial supply function regarding fuel j. ji


 

and ji


 are the parameter vectors for M and SF functions and eik is the error term for the 

observation k at zone i.  

By estimating equation (1) separately for each zone, we are able to capture the zonal 

price differences resulted from transmission congestion. In general we can include as many 
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fuels as enough data is available for. For our simulation studies we chose j=3 to include 

coal, natural gas and oil which are the three major fuels in PJM. Therefore the supply curves 

have three major parts related to the above mentioned fuels. Having fuzzy membership 

functions means that the three parts can potentially overlap. We may thus rewrite equation 

(1) as: 

),,(),,,(),,(),,,,(

),,(),,,(),,,,()2(

OiTiOiOiGiTiOiGiTiGiOiGiCiTiGi

CiTiCiGiCiTiCiOiGiCiTiei
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
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 Where pei is the price of electricity and pCi, pGi  and  pOi are the prices of coal, gas, and 

oil.  SFCi, SFGi, and SFOi  are the parts of supply function associated with fuel coal, gas, and oil, 

MCi, MGi, and MOi are the membership function indicating how much coal, gas, or oil is on the 

margin. All these variables are considered at zone i. The membership functions Mji should 

satisfy the following conditions: 
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 Equation (3) states the probability principles for the membership functions. It 

implies that the probability of each fuel being marginal should be between 0 and 1, and 

they should sum up to 1. 

In order to use Equation 4, the SF and M functions need to be specified. We use 

quadratic supply curves as shown in Equation (4).  

2

21

2
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where α and β parameters are the supply function coefficients.  As the notation 

suggests, fuel prices can be different among the zones.  Equation (4) implies that electricity 

price is a quadratic function of electrical load, while the coefficients of the function can vary 

by fuel prices.  

In addition to the piecewise supply function we need to assign fuzzy membership 

functions to each observation. As discussed in the introduction, the mean of the 

distribution is just a function of load and the fuzzy gap is a function of relative fuel prices. 

Figure 1 describes the process. As described in Figure 1, the fuzzy membership functions 

linearly increase or decrease in the fuzzy gap. The fuzzy gaps depend on the relative fuel 

prices as shown in Equation (5). 
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prices for having the fuzzy gap. For relative prices below this limit, our probabilistic model 

becomes similar to a deterministic model.       specifies how the fuzzy gap grows when the 

relative prices increase. We can write the same equation for the transition from gas to oil as 

shown in Equation 6. 
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Figure 4: Fuzzy variable thresholds: The fuzzy gap depends on the relative fuel prices while the mean of the 

distribution depends on zonal and system load. 

Thus to fully identify the fuzzy thresholds we need to find qi,C/G , qi,G/O, qT,C/G , qT,G/O,  
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 and     . Once these parameters are specified we can use an ordinary least 

squared (OLS) regression method to find the optimal alpha and beta parameters in 

Equation (4).  To minimize the sum of squared errors in Equation (1) we need to find the 

optimal parameters for the fuzzy threshold. Unlike the regression part of the problem, this 

part is non-linear, non-convex, and the derivation of the objective function is not available. 

Therefore classical optimization algorithms fail to handle the problem. We use a powerful 

evolutionary optimization algorithm known as Covariance Matrix Adaptation-Evolution 

Strategy (CMA-ES). It takes samples from the decision space and approximates the 
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covariance matrix from the fitness of the samples. It has two step size control which leads 

to fast convergence while preventing the premature convergence.  

2.1. Assigning Membership Functions 

After specifying all the eight parameters needed for the fuzzy thresholds we use them to 

assign membership functions to the data points. It should be noticed that we calculate 

different fuzzy gap for different observations as the fuel prices may vary from time to time. 

However the mean of the distributions, the solid lines in Figure 1, remain fixed. Figure 2 

shows how the fuzzy membership function for coal is defined. At points A and B the 

membership function gives the value of 1, while at points C and D the function has the value 

of zero. The membership function is a linear plane fitting the four points. According to 

analytical geometry we only need three points to specify the plane  The plane’s formulation 

is given in Equation (7): 
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Figure 5: Fuzzy membership function assignment for coal using analytical geometry formulation for linear 

plane. 

MC‘  is the unadjusted membership function for coal. The formulation provided in 

Equation (7) gives negative for points above the high fuzzy limit. It also gives values larger 

than one for the observations below the lower fuzzy limit. Therefore we need to modify the 

outcomes of Equation (7). The modification is described in Equation (8) 

       

   
   

       
   

   
   

  

Membership function for oil is calculated in the exact same way.  For simplicity we 

make sure that the threshold gaps of coal-gas and gas-oil do not intersect where we have 
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observations. This way we ensure not having mixture of more than two fuels on the margin. 

The membership function for gas is calculated in Equation (9). 

              

2.2. Adjusting Load in the Fuzzy Gaps 

Figure 3 shows two different fuzzy gaps Δ1  and Δ2  . In the case with no fuzzy gap, point 

A represents the last coal power plant in the system. With the fuzzy gap of Δ1 , point B 

represents the same power plant. And finally point C represents the same power plant 

when fuzzy gap equals Δ2 . Thus the loads variables used in Equation (4) should be adjusted 

when we have different fuzzy gaps to prevent over estimation of the prices. We need a 

transformation to map point C with fuzzy gap of Δ1  and point b with fuzzy gap of Δ2  to the 

reference point of A.  However the transformation should keep point E with Δ1  and  D with 

Δ2  at their original location.  

With respect to natural gas, point A represents the first gas fired power plant when the 

fuzzy gap equals zero. Points E and D represent the same natural gas power plan when the 

fuzzy gap equals  Δ1  and Δ2  respectively. 

The transformation for coal is explained by Equation (10).   
  and   

  are the equivalent 

zonal and system load when we have fuzzy marginal coal.   
  and   

  are the projection of 

the original point on the lower fuzzy limit (E or D). Similar transformation is needed for gas 

and oil. For oil we need the projection on the higher limit of the fuzzy gap. For natural gas, 

the projection depends on whether there is a mixture of coal and gas or gas and oil. 
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Figure 6: Load adjustment in the fuzzy gaps 

3. Application to PJM utility zones 

We applied our method to the seventeen utility zones of PJM. A map of PJM is depicted 

in figure 7. The utility names with their abbreviations are presented in Table 1. 
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Figure 7: Geographical distribution of utilities in PJM electricity market 

We used zonal load and real time prices from PJM website. We also gathered fuel prices 

for electricity industry from EIA website. The data we used was from January 2006 to 

December 2010.  

The membership function parameters obtained by our method are presented in table 2. 

We also estimate the regression parameters introduced in Equation 6 for all the zones. 

These parameters are presented in table 3. Having the information provided in these two 

tables we can construct the zonal supply curves and use them for policy analysis. The 

thresholds are depicted for PSEG in Figure 8, in which we can see the areas where different 

fuels are marginal. It is assumed that the fuel prices equal $2.25 /mmBTU for coal, 

$8/Thousand cubic feet for gas and $17/mmBTU for oil. 



16 
 

Table 1- PJM utility names and abbreviation 

Utility Name Abbreviation Utility Name Abbreviation 
Allegheny Power 
Systems 

APS Jersey Central Power 
and Light Company 

JCPL 

American Electric 
Power 

AEP Metropolitan Edison 
Company 

METED 

Atlantic City Electric 
Company 

AECO Philadelphia Electric 
Company 

PECO 

Baltimore Gas and 
Electric Company 

BGE Pennsylvania Power 
and Light 

PPL 

Commonwealth 
Edison Company 

COMED Pennsylvania Electric 
Company 

PENELEC 

Dayton Power and 
Light Company 

DAY Potomac Electric 
Power Company 

PEPCO 

Dominion DOM Public Service Electric 
and Gas Company 

PSEG 

Delmarva Power and 
Light Company 

DPL Rockland Electric 
Company 

RECO 

Duquesne Light DUQ   

 

 

Figure 8: Fuzzy thresholds for PSEG 
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Table 2: Membership function parameters 

  qi,C/G qT,C/G qi,G/O qT, G/O ΔC/G ΔG/O γC/G γG/O 

APS 5473.48 2823206.60 8639.11 4456033.14 0.13 0.67 5519.66 448.13 

AEP 15417.73 -1036154.35 22675.99 -1523947.93 0.12 1.29 14642.84 1049.04 

AECO 554.33 -67528.47 3089.72 652936.88 0.12 1.46 2213.49 648.54 

BGE 5811.91 180676.45 10315.82 312681.23 0.11 0.64 4880.08 1096.72 

COMED 6279.07 -93541.39 18962.21 -743088.54 0.13 0.19 16389.86 358.08 

DPL 5858.99 108462.62 10109.10 187141.30 0.13 1.61 3340.23 1780.29 

DUQ 2074.41 773823.65 3269.75 1768273.74 0.12 1.34 2000.12 1068.47 

JCPL 7769.33 102126.96 14240.68 187192.11 0.12 0.67 3474.8 1611.26 

METED 2310.31 344940.08 3728.03 556612.23 0.12 1.52 2061.5 2013.37 

PECO 4196.89 -625998.37 7124.23 -1062635.50 0.12 1.42 6072.26 2891.8 

PPL 14583.89 114087.44 21544.10 168536.05 0.12 1.72 4397.61 2517.59 

PENELEC 2119.39 1.18E+18 3068.89 1.93E+18 0.12 0.17 1769.65 0 

PEPCO 2833.18 -633099.84 5585.74 -1248182.85 0.11 0.23 4350.63 1076.27 

PSEG 27987.32 84412.31 14234.77 328079.30 0.12 0.38 6191.27 983.92 

RECO 61.62 -63378.77 260.11 -393572.08 0.12 0.66 340.65 76.21 

DAY 2319.59 7.92E+17 3746.00 3.64E+18 0.12 1.58 2544.53 501.1 

DOM 7483.11 -241531.93 14239.86 -459619.62 0.11 0.16 8459.42 2872.78 
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Table 3- Regression parameters: * indicates the significant coefficients with 95% confidence interval 

  COAL Natural Gas Oil 

Coeff 1 qi qi
2 qT qT

2 1 qi qi
2 qT qT

2 1 qi qi
2 qT qT

2 

APS 0.69* -0.78* 0.73* -1.01* 0.83* 2.57* -8.34* 5.65* 1.49* -0.08 489.07 -958.17 484.94 -28.68* 16.6* 

AEP 1.24* -3.28* 2.41* 0.45* -0.3* 0.97* -3.65* 3.06* 0.71* 0.13 -310.29 628.08 -317.71 -0.02 0.82 

AECO 0.25* -0.36* 0.68* -0.63* 0.44* 0.41* -2.21* 1.79* 0.77* 0.21* 11.7 21.18 -10.02 -49.7* 27.98* 

BGE 0.44* -1.13* 0.72* 0 0.21 0.44* -2.56* 2.65* 1.35* -0.97* -12.14 54.37* -25.26* -36.95* 20.97* 

COMED 0.57* -3.11* 2.99* 1.48* -1.21* -0.91* -1.89* 2.12* 4.22* -2.37* 340.46 -698.67 362.46 -7.4 4.42 

DPL 0.36* -0.01 0.08 -0.89* 0.74* 0.4* -1.6* 1.58* 0.39 0.21 41.05* 5.26 -1.71 -92.28* 48.72* 

DUQ 0.98* -3.48* 2.58* 1.28* -0.86* -1.29* -1.03 1.62* 3.61* -1.73* -21032.7 41343.97 -20760.7 933.25 -483.25 

JCPL 0.72* -1* 0.75* -0.84* 0.7* 0.18* 0.64* -0.43* -0.86* 1.32* 20.35* -9.22 6.44* -37.96* 21.73* 

METED 0.55* -0.63* 0.61* -0.92* 0.81* 1.65* -1.58* 1.56* -3.08* 2.63* 52.73 224.21 -111.03 -333.5* 168.65* 

PECO 0.7* -1.72* 1.28* -0.06 0.22 -0.14 3.69* -1.63* -3.32* 2.36* -24.7 107.22 -53.31 -64.68* 35.14* 

PPL 0.5* 0.69* -0.27* -1.97* 1.42* 2.32* -3.8* 2.44* -2.08* 2.14* 48.13* -18.86* 11.36* -84.36* 44.9* 

PENELEC 0.96* -1.3* 1.12* -1.34* 1.2* 4.18* -6.89* 4.7* -4.1* 3.53* 0 0 0 0 0 

PEPCO 0.2* -1.35* 0.84* 0.93* -0.41* 0.15* -2.09* 2.21* 1.78* -1.31* -17.77 31.11 -8.93 -6.25* 3.18* 

PSEG 0.68* -0.5* 0.4* -1.2* 0.94* 0.12 1.11* -0.71* -1.23* 1.63* 7.71 14.18 -5.22 -37.23* 21.69* 

RECO 0.04* 1.72* -0.94* -2.45* 2.05* 0 1.87* -1.26* -1.39* 1.65* 5.69* -3.57 3.6 -10.71* 6.47* 

DAY 0.91* -2.13* 1.74* -0.05 0.11 -2.16* 5.26* -1.92* -0.78 0.8* 0.23* 0 0 0 0 

DOM 0.52* -2.2* 1.48* 1.01* -0.55* 0.81* -2.57* 2.65* 0.56* -0.66* 76.02* -158.63* 89.85* -14.98* 9.06* 
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4. Simulation Studies 

In this section we use our method to study the impacts of two policies. First we simulate 

the effects of imposing a carbon tax of $30/ton. Then we study the impacts of Pennsylvania 

act 129. For both policies we assume the following fuel prices: $2.25/mmBTU for coal, 

$5/Thousand cubic feet for natural gas, and $18/mmBTU for oil.  

4.1. Carbon Tax 

We use our method to study the effects of a carbon tax policy. The amount of CO2 

produced from each fuel per million BTU of energy is shown in the following table 

(Silverman): 

Table 4 - CO2 Emission of different fuels 

Fuel Ton CO2 per 

mmBTU of energy 

Coal 94.35 

Natural Gas 53.07 

Oil 74.39 

  

Each thousand cubic feet of natural gas contains 1.03 mmBTU of energy. Having the 

pollution data, we can calculate the equivalent fuel prices considering carbon tax. 
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PTax
  represents the price of fuel including the carbon tax. TaxCarbon has the unit of $/Ton 

of CO2. Considering carbon tax of $30/Ton we can calculate the equivalent fuel prices. We 

simulated the effects of imposing the tax on both electricity prices and marginal fuels for 

the seventeen zone of PJM. The results are presented in tables 5 and 6 for the mentioned 

future fuel price scenario. Table 5 shows that such a tax would increase average prices by 

around 70% in PJM zones. We are able to compare the effect of the policy in different zones 

which was not applicable by models such as (Newcomer et al., 2008).  

Table 5- Prices with and without carbon tax ($/MWh)  

 Min  Average  Max  

 No 

Tax 

With 

Tax 

% 

Change 

No 

Tax 

With 

Tax 

% 

Change 

No 

Tax 

With 

Tax 

% 

Change 

APS 22.34 52.77 136.26 41.44 71.06 71.47 247.88 279.10 12.59 
AEP 23.06 47.57 106.31 36.15 62.81 73.76 70.76 111.91 58.15 
AECO 24.95 66.88 168.01 45.50 134.70 196.03 417.84 1138.21 172.40 
BGE 22.19 55.97 152.22 46.00 74.65 62.30 353.66 854.22 141.54 
COMED 15.67 34.49 120.05 33.51 57.98 73.01 79.24 104.92 32.40 
DPL 23.75 57.24 141.02 47.20 77.91 65.06 344.07 923.38 168.37 
DUQ 22.32 47.62 113.37 36.56 65.28 78.58 71.54 108.11 51.11 
JCPL 24.29 53.97 122.14 43.96 70.42 60.18 414.94 466.12 12.33 
METED 22.68 58.19 156.52 45.55 77.25 69.61 362.59 1104.67 204.66 
PECO 24.69 60.93 146.76 46.01 78.62 70.87 307.21 711.98 131.75 
PPL 17.65 36.31 105.78 45.01 70.39 56.40 312.97 787.70 151.68 
PENELEC 23.92 52.51 119.49 41.70 70.54 69.17 96.09 162.41 69.01 
PEPCO 20.06 37.90 88.88 44.83 69.25 54.48 357.91 402.05 12.33 
PSEG 23.83 53.96 126.43 43.99 69.70 58.43 395.64 444.43 12.33 
RECO 23.79 47.85 101.13 44.17 106.39 140.84 325.00 714.97 119.99 
DAY 25.17 58.02 130.48 36.36 66.88 83.96 67.18 105.78 57.46 
DOM 8.66 9.73 12.33 45.29 68.90 52.14 305.08 342.88 12.39 

 

They found that $50/ton tax would increase average prices in PJM by 50%. Our results 

show larger price increase which could be because of two main reasons. First in 
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(Newcomer et al., 2008) they assume that demand elasticity equals -0.1 which we assumed 

zero. Second, they ignored transmission system and we did not. Table 6 shows that on 

average coal would be more marginal when the carbon tax was imposed. This means more 

natural gas plants would be used for serving base load instead of some inefficient coal 

plants. 

Table 6- Share of each fuel in being marginal (%). 

 Coal Gas Oil 

 No 

Tax 

With Tax No 

Tax 

With Tax No 

Tax 

With Tax 

APS 43.94 46.43 55.91 53.43 0.15 0.15 
AEP 58.48 54.45 41.52 45.55 0.00 0.00 
AECO 42.36 44.87 56.39 53.88 1.25 1.25 
BGE 36.86 42.24 61.55 56.17 1.59 1.59 
COMED 49.81 49.32 50.19 50.68 0.00 0.00 
DPL 38.06 43.29 60.14 54.90 1.81 1.81 
DUQ 60.15 55.07 39.85 44.93 0.00 0.00 
JCPL 33.80 39.54 64.28 58.54 1.92 1.92 
METED 49.02 49.16 50.61 50.47 0.37 0.37 
PECO 47.17 48.05 51.99 51.11 0.84 0.84 
PPL 46.13 47.13 51.62 50.62 2.25 2.25 
PENELEC 53.38 51.78 46.62 48.22 0.00 0.00 
PEPCO 31.95 39.08 66.90 59.77 1.15 1.16 
PSEG 32.71 39.24 65.79 59.26 1.50 1.50 
RECO 30.14 38.49 68.22 59.87 1.64 1.64 
DAY 66.85 58.87 33.15 41.13 0.00 0.00 
DOM 33.19 36.88 65.91 62.21 0.89 0.90 

 

The projected zonal supply curves with and without the carbon tax for APS and PECO 

are shown in figures 9 and 10. The figures clearly show the zonal price difference. 
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Figure 9- Projected supply curve for APS in central Pennsylvania and West Virginia. 

 

Figure 10- Projected Supply function for PECO in Philadelphia area. 

4.2. Act 129 

We use our method of estimating zonal supply curves in the PJM market to evaluate the 

impacts of Act 129, implemented in Pennsylvania in 2009.  Act 129 requires utilities in 
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Pennsylvania to cut their annual electrical load by 1 percent, with additional load 

reductions amounting to 4.5 percent during the 100 highest-load hours each year.  We 

apply our supply curve estimation method to estimating the impact of Act 129 on zonal 

electricity costs in PJM, the frequency with which each fuel is on the margin in each PJM 

zone, and the emissions of greenhouse gases by power generators in the PJM system.  We 

compare our results with those obtained from a single system dispatch curve model that 

ignores transmission constraints, as in Newcomer et al. (2008).  Our analysis uses 2010 as 

a base year, so annual and peak-time load reductions are measured relative to 2010 

electricity demand in PJM. We simulate the impacts of act 129 under the three fuel price 

scenarios described in table 4. 

When we use the single dispatch curve model to estimate the impact of Act 129, we use 

plant-level data from the EPA’s e-GRID database, in conjunction with our assumed fuel 

prices, to generate a single short-run marginal cost curve for the PJM territory.  This is 

approximately the curve that is shown in Figure 1.  We generate hourly electricity demands 

under Act 129 using the following procedure: 

1. For each hour in our 2010 data set, we determine the relative amount of 

total PJM demand that represents Pennsylvania utilities. 

2. Each hour’s demand is reduced by 1 percent. 

3. In the top 100 hours of demand, each hour’s demand is reduced by 4.5 

percent. 

Given our new set of hourly PJM demands, adjusted to reflect successful 

implementation of Act 129, hourly market-clearing prices and generator dispatch are 
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obtained by determining the intersection between the short-run supply curve and a 

vertical demand curve at each hour’s level of demand.  The same procedure is used to 

obtain hourly market-clearing prices and generator dispatch for our baseline case, based 

on the PJM market in 2010. 

Our estimates of Act 129’s impact generated using the single dispatch curve model 

projects that total electricity costs in the PJM territory would decline by $150 million on an 

annual basis following the successful implementation of Act 129.  In this model we do not 

observe any shifts in the marginal fuel, i.e., the reduction in Pennsylvania demand does not 

change the frequency with which coal, natural gas or oil is estimated to be the marginal 

fuel.  Using plant-level average emissions data from the e-GRID database, we calculate that 

Act 129 reduces annual carbon dioxide emissions in the PJM territory by 2.9 million tons. 

In estimating the impact of Act 129 using our regional estimated supply curves, we 

simulated a scenario where utilities within Pennsylvania (APS, DUQ, METED, PECO, PPL, 

PENELEC) must comply with the demand-reduction requirements of Act 129. We note that 

some of the service territory of APS lies outside Pennsylvania. For simplicity, we assumed 

that APS meets Act 129 demand reduction goals in its entire territory. 

Analysis of Act 129 using our estimated zonal supply curves suggests that the savings in 

PJM would be $ 333 million, about $253 million of which would be enjoyed by electricity 

consumers in Pennsylvania. This implies that the total cost of electricity in Pennsylvania 

and territories of APS outside Pennsylvania would decline by 2.88 percent, while total costs 

within the PJM system as a whole would decline by around 1 percent. Applying average CO2 

emission factors (emissions per MWh of electricity generated) for Pennsylvania coal-fired 
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plants, gas plants and oil plants from Blumsack, et al. (2010), we estimate that annual 

emissions of carbon dioxide would decline by approximately 4 million metric tons. 

The estimated impacts of Act 129 are uniformly larger using our regional supply curve 

estimation method than using the single dispatch curve method.  Total estimated electricity 

cost savings are 122 percent larger, and estimated carbon dioxide emissions reductions are 

nearly 40 percent larger using the regional supply curve method. Using our regional supply 

curve estimation method, we find that 76 percent of the net benefit of Act 129 is enjoyed by 

Pennsylvania utilities, in the form of lower electricity costs.  When the single dispatch curve 

model is used, we cannot differentiate region-specific impacts. 

5. Conclusion 

Analysis of electricity policies often requires understanding the effects of transmission 

constraints, which can be very complex.  Incorporating transmission-system impacts in 

engineering models detailed information that is neither publicly available nor practical to 

use for many economists or policy analysts.  Many existing analyses thus abstract from 

transmission constraints.  We develop a method to estimate zonal prices in a transmission-

constrained electricity markets. Our method also estimates the marginal fuel based on 

zonal load and the total demand in the market. It is able to find regions where a mixture of 

two fuels are on the margin.  

We applied our model to seventeen utility zones in the PJM footprint and calculated the 

fuzzy zonal thresholds where the marginal fuel switches. Our results show the sensitivity of 

the marginal fuel to the zonal and system loads. We found that the price of electricity in 

PJM is mostly driven by from natural gas prices.  Our example analysis of Pennsylvania’s 
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Act 129 shows that compliance with Act 129 demand-reduction targets lowers total 

electric generation costs in Pennsylvania by 2.88 percent. We estimate the total cost 

reduction in PJM to be around 1 percent which translates to 333 million dollars. We also 

simulated the effects of a $30/ton carbon tax on PJM prices and fuel mix. Our results 

suggest that such a policy would increase the average prices by around 70 percent and 

increase the usage of natural gas instead of coal. 

While the assumption that transmission constraints can be ignored makes policy 

models more tractable, our analysis of Pennsylvania Act 129 suggests that these models 

may underestimate the impacts of electricity policies. 
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