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Abstract

Transportation in China is characterized by unprecedented, rapid growth in all metrics,

including energy use and emissions. Uncertainty in data, as well as in Chinese parame-

terization of transport growth models, makes forecasting these trends a challenge. A new

application of the Markov chain Monte-Carlo sampling method yields large sets of param-

eters for models which predict passenger vehicle ownership and passenger travel volume,

conditioned on historical data. The resulting suite of forecasts is helps characterize the

uncertainty in the posterior distribution of these macroscopic transport metrics. The need

and prospects for wider application of the uncertainty methodology are discussed.
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1 Introduction

The expansion of personal transport in China and other rapidly developing nations has been

characterized as “faster, sooner and more simultaneously” than the historical pattern in OECD

nations (Marcotullio et al., 2005). One key growth area is the switch from low-speed modes to

cars and light trucks that accompanies increasing household income (Schäfer et al., 2009). This

trend has broad implications for the world’s largest market of vehicles, as well as for refined

oil demand, a keen energy security concern in a country heavily and increasingly dependent

on petroleum imports—in 2011, China imported 56.7% of the oil it consumed (Xinhua News

Agency, 2012).

The paper proceeds as follows. Section 2 lays out the method, including a brief statement

of the Markov chain Monte-Carlo (MCMC) algorithm and subtypes used (2.1), the construction

of simplified models for vehicle ownership and passenger travel volume based on the literature

(2.2), and sources of the historical transport data upon which the models are conditioned (2.3).

In Section 3, the essential process of model tuning (selecting burn-in periods and verifying

aperiodicity) is described and followed by a discussion of results from both models. Finally,

Section 4 gives some general conclusions, with avenues for extension of the work and its

potential use in support of other kinds of transport modelling.

1.1 Uncertainty in Forecasts of Chinese Transport Demand

Annual vehicle sales in China have recently grown by as much as 38% year-on-year—a pace

unmatched elsewhere in the world, faster than in the period before 2007, and beyond the

growth rate of the general economy (Wang et al., 2011). This rapid motorization is also

characterized by great uncertainty arising from at least three sources. First, while the data

produced by the National Bureau of Statistics of China (NBSC) are improving with time, the

quality and accuracy of past figures are still in question, notwithstanding revised calculations

and generally improving coverage over the past decade (Guan et al., 2012; Sinton, 2001). As

a result, it is difficult to specify historical trends with precision, or to assess the soundness of

using these data to develop forecasts. Second, the decisions of central and local govenments
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create policy uncertainty as to whether vehicle supply may be restricted, or demand redirected

to other modes, i.e. public transport (Hao et al., 2011). Thirdly, the future economic context

which will constrains consumer choices is unclear. Population projections from the United

Nations bracket an enormous 450-million range in 2050 (UN Population Division, 2010); as a

multiplier for per-capita ownership, this considerably affects vehicle stocks. Will the economic

expansion continue apace, or will it settle—to what level, and how soon? Urbanization will

create hundreds of cities of 1-2 million people, while at the same time possibly decreasing

density in the directly-governed megacities (Nam and Reilly, 2012)—what transport services

can the government make available to city dwellers, and how will they use them?

Together, these aspects of uncertainty in Chinese transport reduce the value of single point

estimates. One response is to develop a range of scenarios which bracket uncertain outcomes

of interest, for example as in Kishimoto et al. (2012); Wang et al. (2006); Huo et al. (2011);

but scenario analysis, like a point forecast, is “always wrong” (de Neufville and Scholtes, 2011,

pp.22–23), so a need remains for thorough characterization of the uncertainty in transport and

energy projections.

2 Methodology

The paper will detail the construction of an MCMC sampler to generate forecasts which in-

corporate, rather than discard, uncertainty in historical data and the parameters of models

commonly used to represent macroscopic trends in transportation. In doing so, it extends

these analyses from econometric approaches yielding single, high-confidence forecasts to a

suite of forecasts whose statistical properties yield additional, useful information about possi-

ble outcomes.

Important components of an MCMC algorithm are an underlying model, a parameter up-

dating scheme, and accept-reject criteria (Rubenstein and Kroese, 2007).

Structural uncertainty—competing explanations or models for the same transport trends—is

not addressed by this approach, but two separate functional forms are considered for the un-

derlying model. The first is a S-shaped Gompertz curve describing per-capita vehicle ownership,
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a form commonly used to model the adoption technologies from cellphones to alternative fuel

vehicles and entire fleets (Dargay et al., 2007). The second shows exponential growth in total

passenger distance travelled, a form also used in literature (Schäfer, 2006); within this, addi-

tional parameters track the mode share of passenger vehicles.

Each functional form has a distinct set of parameters to be iteratively updated by the Gibbs

method, a subtype of MCMC which relies on conditional probabilities among the parameters.

Appropriate distributions are chosen for candidate parameter values, and domestic Chinese

data from the NBSC is employed as a basis for calculating historial residuals as accept-reject

criteria1 and candidate distributions for sampling. Once constructed, the models are calibrated

with regard to burn-in (the number of iterations required until the model output becomes

stationary) and transition stride sizes (the amount of change between parameter values in

subsequent samples) in order to ensure the usefulness of the outputs.

2.1 Markov-chain Monte Carlo using Gibbs sampling

A Markov chain is a system which undergoes transitions between different states x ∈ X with

transition probabilities q
�

xs+1 | xs
�

.2 Markov chain Monte-Carlo is a methodology for sampling

from complex probability distributions f (x) for which probability density functions are not

directly available. Instead, a Markov chain is constructed so that, after a period of initial burn-

in, successive states approximate a stationary distribution π(x) = f (x) and may be treated as

quasi-independent samples from f (x). In the present application, the continuous state space

X consists of parameter vectors for transport growth models and each MCMC sample is an

equally-likely set of parameter values for the given model, which allows statistical examination

of f (x), the distribution of the model outputs.

The most general expression of the methodology is the Metropolis-Hastings algorithm,

which involves four looping over steps:

1. Begin with a state xs.

1The general form of which is the residual of back-cast model values versus historical data. The probability of
accepting a new parameter value is inversely related to the residual.

2In the following descriptions, t is always a year, and s is the current sampler iteration.
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2. From some proposal distribution q
�

y | xt
�

, sample a candidate y.

3. Compute α (x,y) =min
�

1, π(y)q(x|y)
π(x)q(y|x)

�

4. With probability α, accept y as xs+1; otherwise xs+1 = xs.

Here two variants of the Metropolis-Hastings algorithm are used, both based on the subtype

called Gibbs sampling. In a Gibbs sampler, the proposal distribution for each state variable

(parameter) is a distribution that is conditional on the current values of all other state variables.

Each variable is updated in sequence, α is 1 (i.e. all samples are accepted) and new samples

are used immediately to condition the distributions for the remaining state variables. A new

sample is produced once each state variable has been updated.

For vehicle ownership, the Gibbs update procedure is used with a random-walk Metropolis-

Hastings proposal distribution q (y | x) = q (|x− y|) for some parameters, based on the differ-

ence between the current and proposed parameter value. As well, simulated annealing is used

to allow the sampler to proceed quickly through the state space during the burn-in period, yet

remain in the likely region once it is reached.

The algorithm trades the need to know the probability density of f (x) for some skill re-

quired in implementation. In particular, the chain must be constructed to be aperiodic (states

must not repeat in a fixed pattern) and positive recurrent (the expected return time to any state

must be finite).

2.2 Models

2.2.1 Vehicle Ownership

Dargay et al. (2007) used an S-shaped Gompertz curve to forecast long-run effects of vehicle

ownership, and included a detailed formulation for the saturation level to facilitate comparison

of the effects of urbanization, population density, and asymmetry in growth pathways. Here a

simpler model is used, with the form:
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V̂ (t,x) = P(t) · v̂(t) = p(t) ·αexp
�

β exp
�

γ · t
��

(1)

Where:

P(t) = population, historical for t < 2010, else projected

v̂(t) = per-capita vehicle ownership

x0 = α= saturation level of ownership

x1 = β = t-wards shift parameter (more negative→ further right)< 0

x2 = γ= growth rate parameter (more negative→ faster growth)< 0

The state variable is thus x=
�

αβ γ
�

, with the latter two parameters constrained negative.

As historical data are available for V (t), P(t) in the interval t0 = 1978 < t < t1 = 2010, the

root-sum-of-squares residual between the back-cast stock V̂ (t < t1) and actual is defined:

R(x) =

√

√

√

√

t1
∑

τ=t0

�

V (τ)− V̂ (τ,x)
�2 (2)

The first update in a Gibbs iteration is to α. The saturation ownership level is constrained

to the range between the lowest (0.45 vehicles per capita) and highest (0.8) observed in in-

dustrialized countries with peak or post-peak ownership. A discrete probability mass function

for α ∈ (0.45,0.8) is constructed by calculating R
��

αβs−1 γs−1

��

across this range, subtracting

from maxα (R) and then normalizing so that the mass is lowest where the residual is greatest.

To acomplish simulated annealing, the sampled α is mixed with the existing value by weighting

it with the reciprocal of the iteration count to produce αs.

Next, β and γ are updated in sequence, using the same process for each. An ‘optimal’ β?

(or γ?, etc.) which minimizes R
��

αs β γs−1

��

conditional on the new α and old γ is calculated

by the Nelder-Mead simplex algorithm.3 If β? is positive, the optimum (although not a sample)

is rejected and βt−1 kept. If negative, it used to construct a gamma distribution on (0,∞) for

3As implemented in SciPy, described in Jones et al. (2001–2012).
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−β . The gamma distribution is used because it has the simple, two-parameter expectation

E [Γ(k,θ)] = kθ and is supported on the desired domain. The shape parameter k is chosen to

produce a sharp peak in the probability density, and increased gradually with the number of

iterations. The scale parameter is then set by:

θ =
E
�

−β
�

k
=
−β?

k

From the resulting distribution with an expectation of−β?, a single sample is drawn and ac-

cepted as the next value βs. The process is repeated for γs, and the three new values
�

αs βs γs
�

comprise the new sample and next state of the Markov chain. The effect of this procedure is

to produce parameter values which are randomly distributed, but conditioned on the quality

of the match with historical data.

2.2.2 Passenger travel volume

Schäfer et al. (2009) illustrated several important long-term trends in passenger mobility. With

improving wealth and technological advances, higher-speed modes become more affordable,

leading to a higher average travel speed within a fixed time budget of ∼ 1.1 hours per day and

a corresponding increase in passenger distance travelled per capita. When examined as per-

centages or shares of travel distance, this manifests as a declining share for low-speed modes

including public transport; an increasing share for civil aviation and high speed railways, and

a remainder for road transport that peaks and, in some industrialized nations, has begun to

decline (Schäfer, 2006, Figure 4, page 28).

The model for passenger travel volume embodies these trends, by representing as a declin-

ing S-curve the share of passenger travel volume on railways (3); as an increasing S-curve the

share for civil aviation (4), and a two-parameter exponential growth in PDT per capita (5):

7



d̂r = 1−αr exp
�

βr exp
�

γr · t
��

(3)

d̂a = αa exp
�

βa exp
�

γa · t
��

(4)

d̂ = αdβ
t
d (5)

Neglecting the share for marine passenger transport, as explained below, the share for

highway (road) travel is implicitly d̂h = 1 − d̂a − d̂r , so that a projection of total passenger

distance travelled on roads (highways) is given by:

D̂h = D · d̂h = P(t) · d̂ · (1− d̂a − d̂r)

= P(t) ·αdβ
t
d ·
�

αr exp
�

βr exp
�

γr · t
��

−αa exp
�

βa exp
�

γa · t
���

The state space for this model has eight dimensions, x =
�

αr βr γr αa βa γa αd βd
�

= x i, i ∈

0..7. To allow a more direct application of the Gibbs sampling methodology, conditional dis-

tributions for all parameters are constructed as follows. First, for each of (3), (4) and (5), a

traditional least-squares fit is found.4 This yields not only the fitted values of each parame-

ter—for instance, ᾱr , β̄r , and γ̄r for the share of railway travel—but also their covariances of

the parameters, in the form (again for instance):

Σb =















σ2
α Cov(α,β) Cov(α,γ)

Cov(β ,α) σ2
β Cov(β ,γ)

Cov(γ,α) Cov(γ,β) σ2
γ















Then assuming each of the model’s parameters are jointly multivariate normal distributed

with the fitted values as means, it is equivalent to combine the covariance matrices for each of

the three sub-model equations to produce a block-diagonal form:

4Using the Levenberg-Marquadt algorithm as implemented in SciPy, described in Jones et al. (2001–2012).
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(6)

Using (6), the process to draw a new sample for any x i,t from the conditional proposal

distribution q
�

x i | x j 6=i = x j,t−1

�

is to sample from the univariate N
�

µ̄, Σ̄
�

, where:

µ=









µ1

µ2









, µ̄= µ1+Σ11Σ
−1
12

�

x j 6=i,t −µ2

�

Σ=









Σ11 Σ12

Σ12 Σ22









, Σ̄ = Σ11−Σ12Σ
−1
22Σ21

The distribution is univariate because, with only one parameter being updated at a time,

µ2 is 7×1, Σ22 is 7×7, etc. Each new sample is accepted with probability 1, except during the

burn-in period where occasional non-negative values for β and γ are discarded.

Both of the models described use time, rather than income, as an independent variable—a

decision which needs some defence, as in the cited literature per-capita income or GDP are

important independent variables. There are a number of reasons to use time instead. Most

crucially, this work is intended to guide long-run energy-economic modelling, including hypo-

thetical climate policy scenarios which have large impacts on household income and consump-

tion. Some further comment is made in §4.1. Finally, there are large regional disparities within

China in income, auto ownership and travel patterns, and to use income as an independent

variable obscures distributional differences between provinces, which are changing with time.
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2.3 Data sources

The NBSC’s China Statistical Yearbook, 2011 edition, is the source for data series for the trans-

port sector (National Bureau of Statistics of China, 2011). Tables include historical national

figures, and in some cases the current year regional disaggregation. Table 1 gives a summary

Table Quantity Units Notation

16.07 Passenger travel volume, total

108 km/year

D
Rail, total Dr

National, local, joint venture
Highways Dh

Waterways Dw

Civil aviation Da

16.24 Civil vehicles

104 units

Passenger vehicles, total V
Large, medium, small, minicar

Trucks, total
Heavy, medium, light, mini

Others
16.25 Private vehicles

104 units

Passenger vehicles, total (unused)
Large, medium, small, minicar

Trucks, total
Heavy, medium, light, mini

Others

Table 1: Data series from the China Statistical Yearbook 2011.

of the data available and notation for the series used below; capital symbols denote abso-

lute values or national totals, while lower-case symbols denote fractional shares or per-capita

levels.

One feature of Chinese transport which causes some challenges in the comparison of lit-

erature is government ownership of a large, though declining, fraction of the total stock—for

instance, 48% of passenger vehicles in 2002 and 19% in 2010. Just as the classification of

SUVs as light trucks in the U.S. brought a large portion of the latter category under the um-

brella of light duty (passenger) vehicles, government-owned vehicles in China affect figures on

ownership and mileage because their usage patterns differ from privately-owned vehicles. In

this work, the total civil (including both government and private) passenger vehicle fleet is the

subject of the forecast.
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The passenger travel model used here discards the waterways or marine fraction Dw of total

passenger distance traveled D. As shown in Figure 1, this was small (5% in 1980) and has

since grown smaller in both absolute terms and share, making only one quarter of one percent

of total travel distance in 2010.
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Figure 1: Mode share of passenger transport in China by distance travelled, 1978–2010 (National Bu-
reau of Statistics of China, 2011).

The United Nations Population Division’s World Population Prospects, 2011 revision, gives

estimated population to 2010 and projections to 2100 (UN Population Division, 2010). The

median projections are themselves based on a Bayesian hierarchical model representing key

factors including changing fertility across the demographic transition, mortality, and interna-

tional migration (Alkema et al., 2011). However, the published data for the low-fertility and

high-fertility variants represent fixed offsets, which do not vary across countries, from the me-

dian fertility, and not any range in the unpublished, per-country Bayesian outputs. Rather than

attempt to reproduce the UN projections here, the medium-fertility variant is used directly.

11



3 Results

Before sample sets can be drawn from the models, it must be verified that they have ‘burned

in’ to an ergodic state. Figure 2 demonstrates the progress of the vehicle onwnership sampler

0.6
0.62

0.64
0.66

0.68 0.7
0.72

0.74
0.76

0.78
0.8 −5

−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

−4

−2

0

α β

γ

Figure 2: Sample chain in parameter space for 200 burn-in samples (red) and 400 usable samples
(blue), vehicle ownership model.

from an abitrary initial point
�

α,β ,γ
�

= (1,−1,−1) to the likely region of the parameter

space. A total of 600 samples are shown; the first two hundred, in red, are discarded as burn-

in samples.5 The remaining 400, in blue, comprise the set, or chain, used for the following

analysis. Figure 3 shows a similar distinction made after 300 burn-in samples for the passenger

travel volume model. Note that the distance model, having eight parameters, samples within

an eight-dimensional space which is not easily visualized; the algorithm also progresses from

initial points to a likely region in the other dimensions. Also, the assumption of a multivariate

normal distribution for the travel volume (rather than the imposed conditioning, via residual,

in the ownership model) produces a more neatly distributed chain in the sample space.

With proper operation of the algorithm confirmed, further samples can be drawn to ex-

5It should be noted that, having determined the posterior mean value for each parameter, it is straightforward
to restart the algorithm from an initial point closer to—or precisely at—the mean, reducing the number of samples
to be discarded for burn-in. To better illustrate the methodology, points further afield are used in both Figure 2
and Figure 3.
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amine the distribution of future vehicle ownership and passenger-distance travelled in China.

Through drawing a large number of samples, the extrema, centrality and expected values of

the posterior probability distribution in each indicator—as well in parameter space, when the

parameter values have economic meaning—may be examined. Below, the results of the two

models are examined in turn.

3.1 Vehicle ownership

Quantity E [•]±σ 10% 90%

Ownership [vehicles/capita]
2030 0.279± 0.188 0.0469 0.566
2050 0.402± 0.193 0.0963 0.610

Stock
�

106vehicles
�

2030 389± 261 65.3 797
2050 521± 249 125 790
Maximum < 2050 ” ” 819
Year of peak[0] >2050 >2050 2039

Parameters Median
Saturation ownership α [=] v./cap. 0.614 0.610 0.616
Time shift β [=]0 -2.70 -3.61 -2.04
Growth rate γ [=]0 -0.0542 -0.160 -0.0171

Table 2: Parameter values and posterior distribution characteristics for vehicle ownership model. The
columns contain expectations, sample standard deviations, first and ninth deciles respectively.

Table 2 and Figures 4 and 5 give results from the vehicle ownership model. In Table

2, note that the saturation ownership level varies little across the distribution, but there is a

wide range in projected ownership in 2050. The difference lies in the larger uncertainty in the

growth rate, the response of the sampler to the recent, rapid growth in ownership. Thus, only

in the 9th-decile projection does a peak in auto ownership come before mid-century; after this

point, steady, saturated ownership is overcome by the effect of a decline in the medium-fertility

population forecast from a 2027 peak.

In Figure 4 the contrast between the narrow distribution for saturation ownership and more

uncertain growth rate is visible in the clustering of samples near 0.6 vehicles/capita in 2050. Sam-

ples below the first decile reflect history up to∼ 2005 moreso than recent growth, representing
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Figure 4: Four hundred projections of passenger vehicle ownership, with 1st decile, mean and 9th
decile (black lines).
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a possibility that growth is transient and will soon end. In contrast, Figure 5 makes the effect

of the underlying population trend on actual stocks clearly visible.

As stated, this model is forecasting civil passenger vehicles, rather than all vehicles with

four or more wheels as in Dargay et al. (2007). However, it is notable that the saturation

value of the Gompertz ownership is much lower than that study’s long-run maximum of about

0.8,6 and while the total vehicle stock of 390 million in 20307 matches the 389± 261 million

measured from the posterior distribution here, the sample standard deviation indicates that

the agreement is less consequential than the very large range across forecasts.

3.2 Passenger travel volume

Quantity E [•]±σ 10% 90%

Passenger distance travelled
�

1012km
�

2030
Total 15.0± 10.4 5.58 27.7
Highways 10.0± 6.93 3.74 18.4

2050
Total 87.5± 117 13.6 193
Highways 58.1± 77.8 9.07 128

Share of highways = 1− da − dr

2030 0.667± 0.0146 0.686 0.649
2050 0.663± 0.0165 0.685 0.642

PDT per capita [km/capita]
2030 10,799± 7, 437 4,000 19,868
2050 67,502± 90, 150 10,530 149,323

Parameters Median
PDT annual growth rate = 1− βd 7.60% 4.94% 10.6%
Saturation share of civil aviation αa 0.0857 0.0603 0.107
Saturation share of railways = 1−αr 0.264 0.250 0.278
Saturation share of highways = 1−αa − (1−αr) 0.653 0.624 0.676

Table 3: Parameter values and posterior distribution characteristics for passenger travel volume model.

Table 3 and Figures 6 and 7 give results from the passenger travel volume model. In

Table 3 only a subset of parameters with direct economic significance are displayed. The

envelope of total passenger travel volume grows at less than 11% per year in the 9th decile,

6Dargay et al. (2007), Figure 8, page 17.
7idem., Table 3, page 20.
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Figure 5: Four hundred projections of total vehicle stock under the medium-fertility population fore-
cast, with 1st decile, mean and 9th decile (black lines).
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Figure 6: Four hundred projections of total (grey) and highway (green) passenger distance travelled,
with 1st decile, mean and 9th decile for highways (blue) and the total (red).
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Figure 7: Four hundred projections of travel shares by mode: highway (green), railway(red) and civil
aviation (blue), with 1st decile, mean and 9th decile for each (black lines).

or about 7.6% on average. Notwithstanding an increasing share for highway transport and

a reported decrease in per-vehicle mileage due to the government-to-private fleet shift, this

range of growth rates does not overlap significantly with auto sales growth of 8–17% year-

on-year reported in the literature.8 However, the increase is still very rapid, with the median

representing a doubling time of just under a decade.

In Figure 6, forecasts for passenger vehicle PDT are overlaid on totals. Due to the model

form and a small number of very high forecasts, the standard deviations in 2050 for both

highway and total travel are larger than the distribution expectations.

While theory suggests a shift from low-speed public transport to passenger vehicles and

then aviation with growing income, the time-based sampler does not produce such an outcome

within the period of the forecasts. Instead, Figure 7 shows stabilization in the shares for three

modes, with civil aviation growing steadily, yet from a low level that prevents it from taking

more than 10% of PDT. Rail retains at least 25% of travel in all forecasts, a level higher than

other world regions including Western Europe, while the share for passenger vehicles does

8Wang et al. (2011), Tables 7–8, page 3302; Table 10, page 3304.
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not nearly approach that of North America. The projections emphasize that China will have

a transport future, though accelerated, that takes it along a different path and to a different

endpoint than countries and regions which motorized in the 20th century.

4 Discussion

Information on the likely distribution of outcomes can aid in the design of robust transportation

policy, which will be important in China and other industrializing or developing countries.

The successful planning and management of large transport infrastructure projects relies on

forecasts of demand. Where there is significant uncertainty, a characterization of the range of

future possibilities can allow designers to not only build resilience into systems, but increase

project value by preparing to take advantage of changes, for instance by confidently deferring

expansions until uncertain outcomes are realized (de Neufville and Scholtes, 2011). Analyses

like the present one can contribute to such understanding.

The case of the vehicle ownership saturation levels is also interesting because a high growth

rate may accelerate Chinese domestic demand for transport fuels, exacerbate energy security

concerns and perhaps also create a price signal which deters ownership, whereas slow growth

could allow foreign consumption to press ahead with similar effects. In either situation—by

direct triggering, or by allowing events elsewhere to intervene—ownership patterns could be

disrupted, with the result that the saturation ownership forecast here is never realized.

4.1 Extensions & integration with CGE models

Although prices signals are not present in the models used here, other forms used in trans-

port economics do contain prices explicitly, and would allow the direct representation of price

effects. For example, a Stone-Geary utility function with sampled parameters could be em-

ployed to forecast transport demand while incorporating passenger responses to prices, as

done econometrically in Meyer et al. (2007).

As mentioned above, work contibuting to the U.N. Population Division forecasts fertility
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using the phenomenon of the demographic transition that occurs with increasing wealth—a

factor which is also separately correlated to transport choices. Information on this relationship

would enable a fuller incorporation of uncertainty via a probabilistic P(t) that was jointly

distributed with or conditional on other model parameters.

China has a geographically heterogenous energy system; this includes transport energy use.

Large subway and bus networks, along with high wealth, and the presence of government in

the large, directly-controlled municipalities create a transport environment very different from

that in smaller cities and in the countryside, with different scope and prospects for growth

and change. Modelling these regional differences in a way that incorporates uncertainty could

produce higher quality forecasts.

One of the most promising potential applications of uncertainty methods is in support of

computable general equilibrium (CGE) energy-economic modelling, such as the MIT Emissions

Prediction and Policy Analysis (EPPA) model (Paltsev et al., 2005) or the China-in-Global- and

China Regional Energy & Emissions Models (C-GEM and C-REM) under development by the

Tsinghua-MIT China Energy and Climate Project. This class of large models contain detailed

representation of transport demand, energy use & policy instruments, and in some instances

distinguish between civil aviation and other modes (Winchester et al., 2011), or between pow-

ertrain types—internal combustion, plug-in hybrid-electric, battery-electric—in passenger ve-

hicles (Karplus, 2011). Careful application of sampling could yield sets of parameters (elastic-

ities, expenditure shares and preferences) to inform these models where only point estimates

are currently used; in turn, CGE contributes tracking of dynamic effects (such as path depen-

dency due to capital accumulation) not accomplished in the present application. With the use

of modern computing hardware, replacing the single-equation models used here with full CGE

models is entirely feasible even for thousands of samples, and the results can be highly salient

to policymaking (Sokolov et al., 2009).
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4.2 Conclusion

This paper demonstrated a novel application of existing methods for rigorous treatment of

uncertainty to transport forecasting in China, a country whose greatly uncertain transport

future will have global implications. In doing so, it also showed how such methods can be used

to extend econometric and other models from the literature. Using prior information about

vehicle stock and passenger travel evolution, a range of future forecasts is developed which

are conditioned, but not dependent, on observed reality. The work advances the important

task of better characterizing complex systems such as global transport in order to inform their

future design, management and policy.
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