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the dynamic response of price and inventory to different shocks. We show that news shock

generates response profile different from traditional contemporaneous shocks in price and

inventory. The model is applied to world crude oil market, where the market expectation is
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supply relative to demand. The expectation change has limited effect on crude oil spot price

though.
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1 Introduction

Inventory behavior is usually linked to the expectation about future prices. In the dis-

cussion of the causes of the recent crude oil price uprising, one key question is whether

speculation played an important role in driving up the oil price during 2007-2008. Regard-

less of their stand on it, researchers turn to inventory for a better understanding of the

speculative or precautionary incentive in the oil market, as anticipation of future increases

in oil price could lead to speculative inventory increase. Following this intuition, Kilian and

Murphy (2010) argue against a major role of speculation where the authors identify the

forward-looking element of the real price with data on oil inventories. Hamilton (2009b)

proposes a slightly different argument that if speculation drives up the spot price, the in-

ventory would be accumulated as a result of the spot price being higher than its intrinsic

value. However, Parsons (2009) points out that expectation of higher future price doesn’t

necessarily lead to inventory accumulation if the entire term-structure is elevated, implying

that a major role of speculation might not be easily ruled out by simply using inventory

data.

We propose to study the inventory-price dynamics in an equilibrium model in which inven-

tories, sales and prices are determined endogenously under rational expectation. Inventory

could be especially helpful in understanding the short-run price dynamics and sources of

shocks driving the price variations in general, as different shocks could potentially generate

different inventory-price dynamics. In their extension of the canonical competitive storage

model (Wright and Williams (1982), Deaton and Laroque (1992, 1996)), Dvir and Rogoff

(2010) show that the price effects of storage arbitrage and the resulting price distribution

depend on the types of shocks in the market. Theoretically, in the presence of persistent

growth shocks to the supply/demand, rational storage behavior might actually enhance price

volatility, which enriches earlier understanding of competitive storage’s price-smoothing ef-

fect (Wright and Williams (1982)).

Kilian (2009) points out that oil market is not exogenous and isolated from other parts
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of the economy. Oil prices dynamics is subject to the macroeconomic shocks as much as the

economy is to oil price shocks. In response to Deaton and Laroque (1992, 1996)’s critique,

Arseneau and Leduc (2012) improves empirical performance of classical competitive storage

model by embedding it into a general equilibrium framework. While in this paper we don’t

attempt to model the price-inventory dynamics in a general equilibrium context, we do

consider inventory decision and the resulting price as a process subject to shocks of various

origins from both inside and outside the oil market. Discovery of new oil fields serves as

a supply shock which could be temporary or persistent depending on the size of the field.

Advances in engineering in general would be a technology shock to the overall economy that

also affects the supply side of oil market persistently. A severely cold winter boosts the

specific demand for oil temporarily. A fast-growing economy with limited alternative energy

sources means persistent strong demand for oil. The equilibrium context enables us to study

the dynamic price response to different shocks in the presence of inventory.

In this paper we show that the short-run price dynamics implied from rational storage

behavior in a competitive market indeed depends on the nature of shocks. While short-lived

shocks which lead to current price increase suppresses the incentive to hold inventory in

the current period, the inventory-holding incentive is not affected as much under persistent

shocks which lead to both current and future spot price increases. News shocks about

future market condition which don’t affect current price contemporaneously generate yet a

different response in inventory-holding. The different price-inventory dynamics would then

help uncover the shocks driving behind the observed data.

Our model follows the tradition of Blinder and Fischer (1981), Eichenbaum (1984),

Pindyck (1994) and related literature. While earlier research in this strand of literature

mostly focuses on the role of inventory as a buffer stock in the business cycle and has a more

macroeconomic perspective, like the study of storable output by Blinder and Fischer (1981)

and the study of automobile industry by Blanchard (1983), these models also have implica-

tions for the price-inventory relation for the purpose of estimation. For example, Eichenbaum
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(1984) studies the inventory of finished goods in several industries, using inventory and price

data to estimate the cost structure of inventory-adjustment. Pindyck (1994) studies the the

cost of inventory-holding and its implications for inventory and price behavior.

Observing that crude oil market doesn’t typically experience stock-outs, we follow Eichen-

baum (1984) and Pindyck (1994) in that we don’t model stock-out explicitly. Instead, we

model a non-linear marginal convenience yield as Pindyck (1994) so that when the future spot

price is expected much lower than the current, the inventory would be drawn down, yielding

extremely high marginal convenience yield. We also add to the work of Pindyck (1994) the

endogenously determined price in a competitive market and an inventory-adjustment cost.

This equilibrium model allows us to study the dynamics of inventory and price in response to

different shocks. Interested especially in uncovering the shock processes, we solve and esti-

mate the model following the macroeconomic literature, compromising the potential insights

on the inventory-holding cost structure as considered by Eichenbaum (1984) and Pindyck

(1994).

The paper is planned as follows. Section 2 introduces the model. Section 3 discusses

the theoretical implications on the inventory-price dynamics in an equilibrium model under

rational expectation. Section 4 presents the estimation result and discussion of the shocks in

the context of 07-08 oil price spike. Section 5 carries out robustness check of the estimates.

Section 6 tests the forecasting ability of the model. Section 7 concludes.

2 The Model

2.1 Inventory Decision

A profit-maximizing oil producer in a competitive market makes decision with regards

to its inventory-holding following the condition:

Pt = βEt[Pt+1]− Et[MICt+1] (1)
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Inventory decision Nt+1 at time t would be such that the resulting net marginal cost of

holding inventory Et[MICt+1] would be just covered by the expected intertemporal price

difference βEt[Pt+1]− Pt.

The net marginal cost of holding inventory here includes all costs and benefits associated

in general. Inventory facilitates production and delivery scheduling and avoids stockouts in

the face of fluctuating demand and changing technology shocks. These benefits motivate

producers to hold inventory even if they expect the price to fall, as discussed in Brennan

(1958). Pindyck (1994) further proposes a exponential form for the net marginal cost based

on the observation that the scatter plot of relative inventory against the net marginal cost

of storage is nonlinear (Pindyck (1994)) 1. We follow this functional form, assuming that

the net marginal cost is affected by the current price and inventory relative to the quantity

demanded positively. Another visual feature is that the relative inventory data is much less

volatile compared to the price after the seasonality in inventory is taken away. Thus we

introduce an inventory adjustment cost to Pindyck (1994), following earlier literature like

Eichenbaum (1984).

MICt+1 = Pt ∗ [α(
Nt+1

Nt+1 + Y s
t+1 −Nt+2

)−ϕ + δ +∆(
Nt+1

Nt

)− β ∗∆(
Nt+2

Nt+1

)] (2)

The net marginal cost of storage here takes into consideration the physical cost of holding

inventory δ, the intangible benefit of inventory-holding to avoid stock-out (the first part) and

the inventory adjustment costs (∆ of relative inventory changes) for both current and next

periods. α is constrained to be negative, such that the intangible benefit would be lower

when the inventory level is high relative to demand. ∆ is assumed to be zero in the steady

state when there’s no change in inventory.

1The net marginal cost of storage, or the negative net marginal convenience yield is inferred using spot
and futures prices in Pindyck (1994)

5



2.2 Demand for Oil

Kilian (2009) argued that the overall economic performance affects price as much as the

specific demand for oil. Let Y d
t denote a measure of overall economic performance, which

can be thought of as some function of world GDP, or the index of world economic activities

as proposed by Kilian (2009). The inverse demand function of oil depends on both quantity

demanded Qd
t and the overall economic performance Y d

t as follows:

Pt = P (Qd
t , Y

d
t )

which is decreasing in Qd
t and increasing in Y d

t . We further posit this inverse demand

function to be homogeneous of degree zero, i.e. only the consumption relative to the overall

economic performance matters, as oil consumption and world economic performance is highly

correlated. We use a CES inverse demand function:

Pt = c(
Qd

t

Y d
t

)−
1
γ

where c is a scalar. Crude oil consumption Qd
t is the crude oil production Qs

t less the change

in inventory Nt+1 −Nt, and finally we have:

Pt = c(
Nt +Qs

t −Nt+1

Y d
t

)−
1
γ (3)

2.3 Supply of Oil

On the supply side of the market, we consider the log of world crude oil supply as a

random walk process with a drift.

log(Qs
t) = log(Qs

t−1) + log(µs
t) (4)

log(µs
t) = µ̄+ ϵµt ∼ N(0, σ2

µ) (5)
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The demand shock and supply shock are isomorphic in the model. The supply growth

rate shock log(µs
t) affects price through Qs

t , as modeled in the inverse demand function.

In terms of its effect on price, µs
t can be effectively thought of as either newly discovered

oil sources (a supply shock) or economically-feasible alternative energy sources (a demand

shock). For this reason, we model the supply relative to overall economic performance,
Qs

t

Y d
t
,

instead of modeling demand explicitly.

We complete the model with the following assumptions about stochastic processes driving

behind the relative supply,
Qs

t

Y d
t
:

log
Qs

t

Y d
t

= yτt + yct (6)

yτt = ρτyτt−1 + nτ
t−1 + ϵyτt ϵyτt ∼ N(0, σ2

yτ ) (7)

yct = ρcyct−1 + ϵyct ϵyct ∼ N(0, σ2
yc) (8)

nτ
t = ρnτnτ

t−1 + ϵnτ
t ϵnτ

t ∼ N(0, σ2
nτ
) (9)

We considers three types of shocks: persistent shock yτt , temporary shock yct , and news

about persistent shock nτ
t . As Dvir and Rogoff (2010) have shown, the persistence of the

shocks matters to the price dynamics. In addition to the persistent and temporary shocks,

we’re especially interested in the role of news shock in the price-inventory dynamics. When

the market believes in the news about the future, even though the relative supply isn’t

affected in the current period, rational market participants would still respond right away

to the news by adjusting inventory and quantity demanded. This news shock serves as our

attempt to model the speculative incentive in the market: the market believes the price would

be higher in the future and respond to it rationally. As we will show later in the simulation of

the model, these three different shocks generate different profiles of price-inventory dynamics

over time. Such “patterns” of dynamics would help us identify the shocks driving the recent

oil price fluctuations, when we bring the model to data.
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2.4 Equilibrium

In this model, the world supply of crude oil is not a stationary process. In order to solve

for the steady state, we follow the macroeconomic literature in treating the variables with a

trend.

We normalize inventory by world supply, nt+1 =
Nt+1

Qs
t
. The normalized inventory variable

nt+1 can be thought of as the “effective” inventory level. We also denote the relative supply

by lower letter, qst =
Qs

t

Y d
t
. The model then can be rewritten in terms of effective inventory n

and relative supply y:

Pt = βEt[Pt+1]− Et[MICt+1] (10)

MICt+1 = Pt ∗ [α(
nt+1/µ

s
t+1

nt+1/µs
t+1 + 1− nt+2

)−ϕ + δ +∆(
nt+1

nt/µs
t

)− β ∗∆(
nt+2

nt+1/µs
t+1

)] (11)

Pt = c[(nt/µ
s
t + 1− nt+1) ∗ qst ]

− 1
γ (12)

along with the exogenous processes µs
t , y

τ
t , y

c
t and nτ

t given by equations 5 6 7 8 9. Now {yt}

is a stationary process.

Taking as given the exogenous shocks µs
t , y

τ
t , y

c
t , n

τ
t and the resulting yt, and an initial

stock of effective inventory n0, the equilibrium of the model is a sequence of {Pt, nt+1} that

satisfies: the optimality conditions of the oil producing firm 10 and 11; the market clearing

condition 12.

3 Solving the Model

In this section we solve the model and study the implications of the model on short-run

price-inventory dynamics as the baseline analysis. To solve the model for a given set of

parameters, we log-linearize the model around its deterministic steady state and solve the

resulting linear rational expectations model as in Blanchard and Kahn (1980). The resulting

linearized model links the price time series and the effective inventory as well as underlying
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driving shock processes in terms of their deviations from the steady state. We write this

solved model in a state space form with the effective inventory and the exogenous shocks as

the states. Spot price is determined by the current states. Knowing the stochastic processes

for the states, rational expectation of future spot price could also be attained. Appendix A

offers more details on the solution algorithm.

To study the implication of the model, we calibrate the structural parameters in the model

from the data or assign them according to literature estimates when available, and present

the impulse response functions of price and effective inventory to different shocks under our

parameterization. We show that an increase in effective inventory could accompany both an

increase in spot price or expectation of future prices and a decrease in them. Persistent shock,

temporary shock, and news shock each generates different profiles of dynamic responses in

price, futures spread and effective inventory.

3.1 Parameterization

We consider the world market of oil as competitive and its representative firm as modeled

earlier. The net marginal inventory cost function MIC of the representative firm is crucial

to price-inventory dynamics. However, the literature is limited on its key parameters ϕ in the

marginal convenience yield function, the marginal physical storage cost δ, and the marginal

inventory adjustment cost ∆′. We follow Pindyck (1994)’s estimate for heating oil and set

ϕ = 1.42, δ = 0.89. We arbitrarily set ∆′ = 0.2.

The world demand for oil depends on a key parameter γ, the short-run price elasticity of

demand for crude oil, whose estimate in the literature ranges from 0.05 to 0.44 (Dahl (1993),

Cooper (2003), Baumeister and Peersman (2012), Bodenstein and Guerrieri (2011), Kilian

and Murphy (2010))2. We pick an average value for γ, 0.25.

The relative supply of oil is described by the exogenous processes defined in Equations 5,

7, 8 and 9. For the shocks, we set the autoregressive coefficient for the persistent shock ρτ to

2See Hamilton (2009a) for a summary of the estimates in the literature in Table 1. Kilian and Murphy
(2010) also provides a brief survey of the estimates.
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be 0.9, the temporary shock ρc 0.1, and the news shock ρnτ 0.9. Their standard deviations

are set to 1.

The baseline parameterization is summarized in Table 1.

3.2 Simulated Impulse Response Functions

To obtain a better picture of what the model implies about the short-run price-inventory

dynamics, we examine how oil markets respond to a variety of shocks to the relative supply,

including persistent shock, temporary shock and news shock by simulating their impulse

response functions under the model parameterization.

As the plottings in Figure 1 show, overall, the impulse response functions to persistent

and temporary shocks are similar. A positive persistent shock to relative supply causes a

price drop that is larger in scale and longer in duration compared to a temporary one. The

changes in futures spread are negative and effective inventory positive following both shocks.

More specifically, as for futures spread in the second column, Pt − E(Pt+1), the effect

of a persistent shock is more lasting than a temporary one, but smaller in scale, indicating

that a persistent shock causes a similar drop in expectation of future price to the spot price

decrease, while a temporary shock doesn’t affect the former much. The initial dip in the

futures spread in response to a persistent shock is due to the different recovering speed of

spot price and expectation of future price after the shock. Overall, both shocks cause the

spot price to drop more than the expectation of future price. The news shock instead causes

the expectation of future price to drop more than the spot price for the early 10 periods,

and the futures spread changes its sign after later.

The effects on effective inventory decision nt+1 is similar to futures spread. A positive

persistent shock and a temporary shock both cause an immediate accumulation in effective

inventory, which is drawn out later depending on the persistence of the shocks. The accumu-

lation after a persistent shock is smaller compare to after a temporary shock. However, after

a news shock of the same size, the effective inventory is drawn down by a larger amount,

10



with both spot and expectation of future prices experiencing decreases. The intuition behind

this observation is that, expecting a future glut of supply, market participants start to draw

out from the inventory right away. The release of inventory effectively increases the oil avail-

able for consumption and lower the spot price. On the surface we observe decreases in all

variables: spot price, expectation of future price and inventory. In the other two scenarios,

inventory is accumulated passively as a result of increased supply and so is the price drop.

On the surface we observe decreases in prices accompanied by inventory accumulation. The

different profiles of price-inventory dynamics will enable us to sort out the different shock

processes driving behind them.

To summarize, the profiles of the dynamic response of prices and inventory are very

different in response to the shocks. The news shock of the same size as other two shocks

generates much larger impulse responses, especially in spot price. In the next section, we

will bring the model to data and study the forces behind the recent oil price fluctuations.

4 Data and Model Estimation

In this section we present the estimation of the model using monthly data on prices,

inventory and world supply from 1988 Jan to 2011 April. For prices, we use real spot and

futures (1-month and 6-month) prices of WTI deflated by monthly CPI (1982-84=100).

While world inventory of crude oil is not available, we use OECD inventory instead as its

proxy, which is end-of-month US commercial inventory of crude oil scaled by the ratio of

OECD to US petroleum products stock, following Hamilton (2009a) and Kilian and Murphy

(2010). The world supply of crude oil is available from Energy Information Administration

(EIA).

As mentioned earlier, the trend in world supply and possibly inventory need to be treated.

The effective inventory nt+1 is attained by taking the ratio of OECD inventory and world

supply. Supply growth rate log(µs
t) is also available by taking the log difference in world
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supply. We adjust the seasonality in the effective inventory data regressing the data on

monthly dummies.

The data for estimation include: real spot and futures (1-month and 6-month) prices of

WTI, seasonally-adjusted OECD effective inventory, and world supply growth rate, which

are presented in Figure 2.

4.1 Observable State Variables

One advantage of estimating the model is that some of the state variables are observed.

Both effective inventory nt and world supply growth rate µs
t are available from the available

data .However, due to the lack of data on inventory at world level, the OECD effective

inventory is just a proxy with possible error. As a result, the observation equation for

effective inventory differs from its state-equation form in the extra measurement error ϵnt .

On the other hand, the world supply growth rate shock {µs
t} is fully observed without any

measurement error. Its observation equation is then just an identity mapping the data to

the state variable in the model. This gives us two additional observation equations in the

state-space form:

n̂t

µ̂s
t

 =

1 0 0 0 0

0 1 0 0 0





n̂t

µ̂s
t

yτt

yct

nτ
t


+

ϵnt
0

 ϵnt ∼ N(0, σ2
n) (13)

4.2 Estimation Results

Table 2 and 3 summarize the estimation results. Aside from δ, all estimates are significant

at 99% confidence level. Estimates of the monthly dummies indicate that effective inventory

tend to be lower during colder months than warmer months. We identify a highly persistent
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shock, a white-noise temporary shock and a random-walk news shock behind the price-

inventory dynamics. The autoregressive coefficient of the persistent shock is as high as 0.94.

With the estimates, we first study the impulse response functions, as presented in Figure 3.

Figure 3 plots the impulse response functions of the price and inventory to the shocks.

In response to a one-standard deviation persistent shock, spot price drops by 10 percent.

Expected future spot price drops by even a little more. Effective inventory accumulates right

away, and peaks at 7 percent after 2 years. A temporary shock of the same size causes a

smaller drop of 2 percent in price which dissipates quickly. Expected future spot price is

barely affected. The accumulation in effective inventory is close to zero compared to the

persistent case and the initial accumulation is drawn down right away. Overall the change in

effective inventory is close to nothing. The news shock instead causes no contemporaneous

change in spot price, a slightly smaller drop in the expected future spot price, and a depletion

of effective inventory that looks like the opposite to the persistent case.

Overall, the impulse response functions from our estimates show that in general the shock

effects on effective inventory is small but persisting. Persistent shock and news shock generate

very similar responses in effective inventory, but different responses in price to accompany.

The persistence of shocks shows more through the price responses. It’s with these different

price-inventory dynamics that we are able to sort out the different shocks over the sample

period.

Figure 4 then plots the smoothed states from the estimates with 90% CI’s. As explained

earlier, effective inventory is treated as an endogenous state variable observed with measure-

ment error. The smoothed effective inventory is close to the original data nonetheless, and

the estimate of the measurement error standard deviation is small (0.001). An interesting

observation is that the news shock seem to experience two stages through out the sample

period. Prior to 2004, the news shock is positive in general. At around 2004, the news

shock experience a sudden drop and it stays negative for most of the time. Also, the tight

confidence intervals show that the smoothed states are not sensitive to the uncertainty of
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the parameter estimates.

4.3 Historical Decompositions

Figure 5 presents the contribution of different shocks to effective inventory and oil prices

respectively, to show the relative importance of the shocks to the observables.

(a) shows the effective inventory had there been only one shock and the same initial

effective inventory stock with 90% CI. In the observation equation for effective inventory, the

autoregressive coefficient on itself is 0.9946. As a result, inventory would naturally decrease

over time had there been no shock. The contribution of temporary shock is minimal, and

doesn’t divert inventory from its natural course. The contribution of supply growth rate

shock is similar, though it adds more wiggles to the natural course. In the presence of only

persistent shock, effective inventory steadily accumulates until around 1999, when the rapid

depletion starts. Earlier impulse response function analysis shows that persistent shock has

almost permanent effect on effective inventory. Its accumulated effect on inventory reflects

abundant supply relative to demand prior to 2000, and much more constrained relative

supply in the 2000s. With only the news shock, effective inventory shows almost opposite

time path compared to persistent shock, caused by some dramatic change in the long-term

expectation from abundant to limited relative supply. Judging by their scale, the effective

inventory accumulation caused by change in expectation is less than the depletion due to

the persistent shock. In face with strong global demand and staggered world production,

the spontaneous need to draw down the inventory due to limited relative supply dominates

the accumulation caused by speculative incentive, which leads to lower relative inventory

than its natural course. Similarly, Hamilton (2009a) discusses the trend in the inventory

by comparing the current inventory to a historical 17-year average, and concludes that the

inventory is significantly lower than normal. Given the low price elasticity, the shock effects

on inventory would be small in general. To understand their contribution to price, we need

to decompose the shock contribution to the prices.
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(b), (c) and (d) show the historical decomposition of shock effects on prices respectively.

The contribution of the persistent shock seems to be the major part in all three prices.

Contribution from temporary shock and supply growth rate shock are minimal. The news

shock causes the spot price to increase from steady state by around 1 percent starting

from 2004. Its resulting increases in futures prices are even higher. However, the overall

contribution of news shock to spot price is about 1% of persistent shock, less than 10% for

1-month futures price and 40% for 6-month futures prices. And the news shock contribution

to spot price has relatively wide confidence interval.

To summarize, both persistent shock and news shock contribute importantly to effective

inventory. The persistent shock appears to be the major driving force for prices, though

news shock matters more for futures price with longer maturity term.

4.4 Robustness of the Results

One concern is that the specific functional forms for the marginal convenience yield

and marginal inventory adjustment cost may over restrict the model. Since the model is

log-linearized, the state-space system brought to estimation is essentially a linear mapping

from the last-period effective inventory and three current shocks to current inventory and

prices. The specific functions and its deeper parameters impose constraints about the relation

among the loading factors in the mapping matrices. We check the robustness of the results

by directly estimating the loading factors without constraints.

Under the more relaxed setting, the persistent shock is estimated to have an autoregres-

sive coefficient of 0.94 and standard deviation 0.02, temporary shock 0.02 and 0.005, news

shock 1 and 0.005, which are not significantly different from earlier estimates. The smoothed

states indicate that the results are not driven by the specific functional forms used.
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5 Forecasting

One potential of the model is to forecasting oil spot price using past data on both price

and effective inventory. We evaluate the forecasting ability of the model by carrying out out-

of-sample forecast for 30 periods and compare the forecasts to a random walk and futures

price of the same forecasting horizon. In specific, we look at the cases of 1-month, 2-month,

3-month, 6-month, 8-month and 12-month ahead forecasting of spot price. The reason for

different forecasting horizon is that the model is estimated using 1-month and 6-month

futures prices. To really compare the forecasting ability of the model with futures prices, we

need to consider forecasting horizon other than the maturity term of the futures prices.

Table 4 presents the summarized the forecasts statistics. Figure 6 shows the out-of-sample

forecasts against the competitors and data. In both 1-month and 6-month out-of-sample

forecasts, the model outperforms a random walk, and performs as well as corresponding

futures prices. In 2-month and 3-month cases, the model outperforms a random walk, and

is outperformed by corresponding futures prices. In 8-month and 12-month cases, however,

the model outperforms both random walk and corresponding futures prices.

6 Conclusion

In this paper, we attempt to better understand the price dynamics in world crude oil

market with the inventory data. To do this, we consider the competitive inventory-holding

decision of oil producers. Price and inventory decision are endogenously determined and

made, under current and expected future market condition. We’re especially interested in

the ability of such a framework to uncover the underlying the market condition and expec-

tation from the observed price and inventory data. Parameterization of the model shows

that theoretically the price-inventory responses to different shocks are different. Namely, in

response to traditional contemporaneous shocks to relative supply (consider positive shock),

spot price drops and inventory accumulates. In response to news shock, spot price drops and
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inventory is drawn down. It’s the different response profiles that enable us to sort out the

different shocks from the data. Our estimates using crude oil data show that, the market

is characterized by persisting constrained world supply relative to demand in recent years,

accompanied by the long-term expectation of continuing constraints on our supply. The role

of expectation in driving up the spot price is limited though.

A Solving the Model

The solution of the detrended model involves firstly finding its steady state and log-

linearizing the model around the steady state, and secondly solving the linear system using

Blanchard and Kahn (1980) and writing the model in a state-space form. We use data to

help calibrate some parameters and estimates from the literature for others in our baseline

simulation.

First, we write out the model in steady state:

1 = β − [α(
n/µs

n/µs + 1− n
)−ϕ + δ] (14)

P = c[(n/µs + 1− n) ∗ qs]−
1
γ (15)

log µs = µ̄ (16)

log qs = ȳ (17)

yτ = 0 (18)

yc = 0 (19)

nτ = 0 (20)

nc = 0 (21)
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Then we log-linearize the model around the steady state:

P̂t = βEt[P̂t+1]−
MIC

P
Et[ ˆMICt+1] (22)

ˆMICt+1 = P̂t +micn0n̂t +micn1n̂t+1 +micn2n̂t+2 +micu0µ̂
s
t +micu1µ̂

s
t+1 (23)

where

micn0 = − 1

β − 1
∗∆′ ∗ µs (24)

micn1 =
1

β − 1
[ϕ(1− β + δ)

1− n

n/µs + 1− n
+ (1 + β) ∗∆′ ∗ µs] (25)

micn2 =
1

β − 1
[ϕ(1− β + δ)

n

n/µs + 1− n
− β ∗∆′ ∗ µs] (26)

micu0 =
1

β − 1
∗∆′ ∗ µs (27)

micu1 =
1

β − 1
[ϕ(1− β + δ)

n− 1

n/µs + 1− n
− β ∗∆′ ∗ µs] (28)

P̂t = −1

γ
[pn0n̂t − pn1n̂t+1 − puµ̂s

t + pyq̂st ] (29)

where

pn0 =
n/µs

n/µs + 1− n
(30)

pn1 =
n

n/µs + 1− n
(31)

pu =
n/µs

n/µs + 1− n
(32)

py = 1 (33)

We could write the log-linearized model in terms of state variables Xt, costate variables

Yt and exogenous shock variables et:
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Xt =

 n̂t

n̂t+1

, Yt =

[
P̂t

]
, et =



µ̂s
t

yτt

yct

nτ
t


Using Blanchard and Kahn (1980), we solve for the following state-space form of the

model, where the state variables are nt, µ
s
t , y

τ
t , y

c
t , n

τ
t , and the observed variable is Pt.

State equation:

n̂t

et

 =

Fn,n Fn,e

Fe,n Fe,e


n̂t−1

et−1

+ Z ∗ vt vt ∼ N(0, U) (34)

where v′t =

[
ϵµt ϵyτt ϵyct ϵnτ

t

]
, Z =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, U =



σ2
µ 0 0 0

0 σ2
yτ 0 0

0 0 σ2
yc 0

0 0 0 σ2
nτ


.

Observation equation:

P̂t =

[
HP,n HP,e

]n̂t

et

 (35)
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Table 1: Model Parameterization

Parameters Value Description

β 0.997 monthly depreciation rate

γ 0.25 price elasticity of demand for crude oil

ϕ 1.42 parameter in net marginal convenience yield

∆′ 0.2 marginal cost of inventory change

δ 0.89 marginal physical storage cost

ρτ 0.9 autoregressive coefficient of persistent shock

ρc 0.1 autoregressive coefficient of temporary shock

ρnτ 0.9 autoregressive coefficient of news shock

σyτ 1 s.d. of persistent shock

σyc 1 s.d. of temporary shock

σnτ 1 s.d. of news shock

σµs 1 s.d. of shock
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Table 2: Estimated Model for Crude Oil Market

Parameters Value Std. Error Description

β (set) 0.997 monthly depreciation rate

γ (set) 0.25 price elasticity of demand for crude oil

ϕ (set) 1.42 parameter in net marginal convenience yield

∆′ 125.27∗∗∗ (35.31) marginal cost of inventory change

δ 0.001 (0.002) marginal physical storage cost

ρτ 0.94∗∗∗ (0.264) autoregressive coefficient of persistent shock

ρc 0.00∗∗∗ (0.000) autoregressive coefficient of temporary shock

ρnτ 1.00∗∗∗ (0.287) autoregressive coefficient of news shock

σyτ 0.022∗∗∗ (0.006) s.d. of persistent shock

σyc 0.005∗∗∗ (0.001) s.d. of temporary shock

σnτ 0.001∗∗∗ (0.000) s.d. of news shock

σµs (set) 0.011 s.d. of news shock

σn̂ 0.001∗∗∗ (0.000) s.d. of measurement error to effective inventory

Note: (i) Simulated standard errors of the estimates are in parentheses; (ii) *, ** and ***denote that the
point estimate is significant at the 90%, 95% and 99% confidence levels, respectively.
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Table 3: Estimated Model for Crude Oil Market - continued

Parameters Value Std. Error Description

Jan. −0.04∗∗∗ (0.01) monthly seasonality dummy

Feb.(set) 0 monthly seasonality dummy

Mar. 0.00 (0.01) monthly seasonality dummy

Apr. 0.03∗∗∗ (0.01) monthly seasonality dummy

May. 0.04∗∗∗ (0.01) monthly seasonality dummy

Jun. 0.03∗∗∗ (0.01) monthly seasonality dummy

Jul. 0.02∗∗∗ (0.01) monthly seasonality dummy

Aug. −0.00 (0.01) monthly seasonality dummy

Sep. −0.00∗∗∗ (0.01) monthly seasonality dummy

Oct. −0.03∗∗∗ (0.01) monthly seasonality dummy

Nov. −0.00 (0.01) monthly seasonality dummy

Dec. −0.01 (0.01) monthly seasonality dummy

Note: (i) Simulated standard errors of the estimates are in parentheses; (ii) *, ** and ***denote that the
point estimate is significant at the 90%, 95% and 99% confidence levels, respectively.
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Table 4: Out-of-sample Forecast Performance

(a) One-month ahead Out-of-sample Forecast

forecaster MSE MAE ME

model 48.95 5.53 -0.0057

random walk 50.94 5.66 -0.0015

1-month futures price 48.95 5.53 -0.0057

(b) 6-month ahead Out-of-sample Forecast

forecaster MSE MAE ME

model 0.0525 0.1626 0.0268

random walk 0.1626 0.2156 0.1035

6-month futures price 0.0525 0.1626 0.0268

(c) 2-month ahead Out-of-sample Forecast

forecaster MSE MAE ME

model 0.0368 0.1182 -0.0173

random walk 0.0398 0.1272 0.0022

2-month futures price 0.0356 0.1146 -0.0223

(d) 3-month ahead Out-of-sample Forecast

forecaster MSE MAE ME

model 0.0602 0.1459 -0.0171

random walk 0.0684 0.1695 0.0170

3-month 0.0601 0.1492 -0.0078

(e) 8-month ahead Out-of-sample Forecast

forecaster MSE MAE ME

model 0.0350 0.1323 0.0464

random walk 0.0845 0.2140 0.1489

8-month futures price 0.0384 0.1391 0.0540

(f) 12-month ahead Out-of-sample Forecast

forecaster MSE MAE ME

model 0.0257 0.1191 0.0614

random walk 0.1087 0.2572 0.2118

12-month futures price 0.0353 0.1385 0.0814
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Figure 1: Impulse Response Functions

Note: p-shock: persistent shock; t-shock: temporary shock; news: news shock
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Figure 3: Estimated Impulse Response Functions

Note: p-shock: persistent shock; t-shock: temporary shock; news: news shock
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Figure 4: Kalman Smoothed States with 90% CI
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Figure 5: Shock Decomposition Overview
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