The Abatement Cost of Methane Emissions from Natural Gas Production

Levi Marks

University of California, Santa Barbara

September 24, 2018

Motivation: Natural Gas as a "Bridge Fuel"

Levi Marks

Motivation: Natural Gas as a "Bridge Fuel"

Natural gas for electricity generation:

- Produces roughly half the carbon dioxide emissions as coal
- Is abundant and cost-competitive with other fuels
- Has large-scale infrastructure already in place
- Complementary to intermittent renewables

Motivation: Natural Gas as a "Bridge Fuel"

Natural gas for electricity generation:

- Produces roughly half the carbon dioxide emissions as coal
- Is abundant and cost-competitive with other fuels
- Has large-scale infrastructure already in place
- Complementary to intermittent renewables

However, methane (CH₄):

- Is itself a greenhouse gas about 30x more potent than CO₂ on a 100-year time horizon
- 3.2% leakage rate implies no climate advantage over coal (Alvarez et al., 2012)
- ▶ 2-6% leakage rates estimated by scientific studies (Sanchez & Mays, 2015)

This Paper

Objectives:

- Estimate the marginal abatement cost curve (MACC) for methane emissions from natural gas production
- Predict the effects of an emissions tax or trading program

This Paper

Objectives:

- Estimate the marginal abatement cost curve (MACC) for methane emissions from natural gas production
- Predict the effects of an emissions tax or trading program

Empirical Strategy:

- Spatially link production facilities to gas trading hubs to estimate how emitting behavior responds to changes in price
- Simulate effects of increasing price

This Paper

Objectives:

- Estimate the marginal abatement cost curve (MACC) for methane emissions from natural gas production
- Predict the effects of an emissions tax or trading program

Empirical Strategy:

- Spatially link production facilities to gas trading hubs to estimate how emitting behavior responds to changes in price
- Simulate effects of increasing price

Intuition:

 Firms choose an optimal level of methane emissions such that Marginal Abatement Cost = Marginal Private Benefit = Gas Price

Background

Sources of Emissions from Production:

- Unintentional leaks from extraction, processing, transportation, and storage equipment
- Intentional venting during completion and maintenance

Data

EPA Greenhouse Gas Reporting Program (GHGRP):

- Annual estimated methane emissions for over 500 onshore gas production facilities
- "Facility" is delineated at firm-basin level
- Six-year panel from 2011-2016
- Quality issues because methane leakage is hard to measure

Data

EPA Greenhouse Gas Reporting Program (GHGRP):

- Annual estimated methane emissions for over 500 onshore gas production facilities
- "Facility" is delineated at firm-basin level
- Six-year panel from 2011-2016
- Quality issues because methane leakage is hard to measure

DrillingInfo:

► Comprehensive well-level dataset of all oil & gas production in US

Data

EPA Greenhouse Gas Reporting Program (GHGRP):

- Annual estimated methane emissions for over 500 onshore gas production facilities
- "Facility" is delineated at firm-basin level
- Six-year panel from 2011-2016
- Quality issues because methane leakage is hard to measure

DrillingInfo:

Comprehensive well-level dataset of all oil & gas production in US

SNL:

Spot gas prices for 96 geographically-dispersed trading hubs

Data: GHGRP Facilities

The Abatement Cost of Methane Emissions from Natural Gas Production

Fractional Polynomial Model: Separately estimates all possible combination of A and B and selects the best fit for the data

$$R_{it} = \beta_0 + \beta_1 P_{it}^A + \beta_2 P_{it}^B + \mathbf{X}_{it} \psi + \gamma_i + \lambda_{rt} + \varepsilon_{it}$$

Fractional Polynomial Model: Separately estimates all possible combination of A and B and selects the best fit for the data

$$R_{it} = \beta_0 + \beta_1 P_{it}^A + \beta_2 P_{it}^B + \mathbf{X}_{it} \psi + \gamma_i + \lambda_{rt} + \varepsilon_{it}$$

$$R_{it} \equiv$$
 Emissions rate at facility *i* in year *t*
 $P_{it} \equiv$ Spot gas price

A & $B \equiv$ Fractional polynomial parameters (-2, -1, -0.5, 0.5, 1, 2, 3, log)

Levi Marks

Fractional Polynomial Model: Separately estimates all possible combination of A and B and selects the best fit for the data

$$R_{it} = \beta_0 + \beta_1 P_{it}^A + \beta_2 P_{it}^B + \mathbf{X}_{it} \psi + \gamma_i + \lambda_{rt} + \varepsilon_{it}$$

 $R_{it} \equiv \text{Emissions}$ rate at facility i in year t

 $P_{it} \equiv \text{Spot gas price}$

A & $B \equiv$ Fractional polynomial parameters (-2, -1, -0.5, 0.5, 1, 2, 3, log) $X_{it} \equiv$ Controls (wells, completions, oil production, Colorado post-2014 FE) $\gamma_i \equiv$ Facility FE

 $\lambda_{rt} \equiv {\sf Region-Year}\;{\sf FE}$ (South Central, East, Mountain, Pacific)

Results: Relationship between Prices and Emission Rates

The Abatement Cost of Methane Emissions from Natural Gas Production

Results: Relationship between Prices and Emission Rates

Comparison of second-order FP with higher- and lower-order models

Results: Relationship between Prices and Emission Rates

	Linear	1st-Order FP	2nd-Order FP	3rd-Order FP
P_{it}	-0.0018*** (0.0006)			
$\log(P_{it})$		-0.0061*** (0.0017)		
$P_{it}^{-0.5}$				0.0493 ^{***} (0.0168)
P_{it}^{-1}			0.0460*** (0.0154)	
P_{it}^{-2}			-0.0319*** (0.0123)	-0.0202** (0.0085)
P_{it}^3				0.00001 (0.00001)
Constant	0.0127*** (0.0025)	0.0117*** (0.0023)	-0.0059* (0.0033)	0.0216*** (0.0058)
Ν	1,150	1,150	1,150	1,150
$\label{eq:standard} \mbox{Standard errors in parentheses (clustered at the parent firm level)} \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$				

All models include facility FE, region-year FE, and controls

Observations weighted by facilities' mean gas production

Simulation Framework: Effect of a Methane Tax

Levi Marks

The Abatement Cost of Methane Emissions from Natural Gas Production

Simulation Framework: Effect of a Methane Tax

> Start facilities at average emission rates and prices

The Abatement Cost of Methane Emissions from Natural Gas Production

Simulation Framework: Effect of a Methane Tax

> Start facilities at average emission rates and prices

> Increase prices & decrease emission rates following slope of estimated curve

The Abatement Cost of Methane Emissions from Natural Gas Production

Results: Effect of a Methane Tax

The Abatement Cost of Methane Emissions from Natural Gas Production

Results: Effect of a Methane Tax

Predicted Effects at Selected Methane Prices

Methane Tax	Equiv. CO ₂ Price	Total Abatement	Total Abatement	Total Cost	Value of Recvrd Gas	Net Cost
(\$/Mcf)	(tCO_2e)	(tCO_2e)	(Percent)	(\$ Millions)	(\$ Millions)	(\$/Mcf)
2.79	5.00	45,904,000 (15,542,000)	55.7% (23.8)	336.7 (143.7)	265.3 (111.6)	0.0026 (0.0011)
11.18	20.00	58,437,000 (20,184,000)	72.0% (33.4)	528.3 (272.3)	336.5 (155.7)	0.0067 (0.0042)
27.37	48.97	61,301,000 (22,130,000)	75.5% (36.8)	632.6 (383.0)	353.9 (171.5)	0.0098 (0.0077)
	Ν	1,150	1,150	1,150	1,150	1,150

Bootstrapped standard errors in parentheses

Levi Marks

Results: Adjusting Simulation Parameters

Model	Total	Total	Total	Value of	Net
	Abatement	Abatement	Cost	Recvrd Gas	Cost
	(10020)	(Tercent)	(# Willions)		(\$/10101)
Base Model	61,301,000	75.5%	632.6	353.9	0.0098
	(22,130,000)	(36.8)	(383.0)	(171.5)	(0.0077)
Lower-Bounding	50,342,000	61.6%	530.3	290.3	0.0084
Rates at 0.1%	24,819,000	(30.4)	(321.0)	(142.6)	(0.0064)
Starting Facilities at	43,179,000	67.7%	341.3	178.7	0.0057
2016 Prices & Rates	(21,989,000)	(34.5)	(239.7)	(90.7)	(0.0054)
Using First-Order	66,838,000	81.8%	827.5	384.7	0.0155
Fractional Polynomial	(27,637,000)	(33.8)	(455.4)	(157.7)	(0.0108)
N	1,150	1,150	1,150	1,150	1,150

Predicted Effects of Fully Internalizing Social Cost (\$27.37/Mcf)

Bootstrapped standard errors in parentheses

This Paper:

- \$1.55/tCO₂e under \$5 carbon tax (average abatement cost)
- \$4.56/tCO₂e under \$50 carbon tax

This Paper:

- \$1.55/tCO₂e under \$5 carbon tax (average abatement cost)
- \$4.56/tCO₂e under \$50 carbon tax

Johnson (2014):

▶ $11-31/tCO_2$ for state renewable portfolio standards

This Paper:

- \$1.55/tCO₂e under \$5 carbon tax (average abatement cost)
- \$4.56/tCO₂e under \$50 carbon tax

Johnson (2014):

\$11-31/tCO₂ for state renewable portfolio standards

Meng (2017):

▶ $19/tCO_2$ industry expectation of MAC for Waxman-Markey bill

This Paper:

- ▶ \$1.55/tCO₂e under \$5 carbon tax (average abatement cost)
- \$4.56/tCO₂e under \$50 carbon tax

Johnson (2014):

\$11-31/tCO₂ for state renewable portfolio standards

Meng (2017):

▶ \$19/tCO₂ industry expectation of MAC for Waxman-Markey bill

Fowlie, Greenstone, and Wolfram (2018):

\$201/tCO₂ for federal Weatherization Assistance Program

Conclusion

Summary:

- Estimated MACC for methane emissions from gas production
- Predicted 56% abatement under \$5 carbon price
- Abatement costs relatively low compared to other sectors
- Natural gas likely to remain competitive under methane regulation

Conclusion

Summary:

- Estimated MACC for methane emissions from gas production
- Predicted 56% abatement under \$5 carbon price
- Abatement costs relatively low compared to other sectors
- Natural gas likely to remain competitive under methane regulation

Discussion:

- Efficient area to prioritize for short-term GHG mitigation
- Implementing methane tax with imperfect/costly monitoring presents significant challenge
- More economics research on methane leakage needed

Thank You

Levi Marks

Data: Summary Statistics

		Full Sample		Trimmed Sample	
	Source	Mean	\mathbf{SD}	Mean	\mathbf{SD}
CH ₄ Emissions Rate	GHGRP & DI	0.3894	4.0953	0.0108	0.0152
CH_4 Emitted (MMcf)	GHGRP	217	518	266	389
From Completions	GHGRP	29	169	34	134
From Equipment	GHGRP	117	276	143	222
From Maintenance	GHGRP	49	110	58	116
Gas Production (MMcf)	DrillingInfo	57,729	164,731	$63,\!436$	98,459
Oil Production (Mbbl)	DrillingInfo	4,199	10,854	4,523	10,992
Wells Per Facility	DrillingInfo	797	1,409	879	1,489
Completions	DrillingInfo	35	73	47	90
Wholesale Gas Price (\$/Mcf)	SNL	3.23	0.83	3.20	0.85
Number of Facilities		683		222	
Total Observations		2,980		1,150	

 $Mcf \equiv Thousand cubic feet; MMcf \equiv Million cubic feet; Mbbl \equiv Thousand barrels$

Levi Marks

Data: Variation in Prices

Data: Emissions Rates

Density of emissions rates vs. log emissions rates

The Abatement Cost of Methane Emissions from Natural Gas Production

Robustness Check: Negative Binomial Model

The Abatement Cost of Methane Emissions from Natural Gas Production

Robustness Check: Unweighted Regression

Robustness Check: Trimming Emission Rates at 1%

Results: Abatement Mechanisms

	Low-Bleed Pneumatic Controllers	High-Bleed Pneumatic Controllers	Intermittent Pneumatic Controllers	Pneumatic Pumps	Venting Days	Gas Recovered For Sales
P_{it}	-78.1 (171.5)	$\begin{array}{c} 0.13 \\ (20.11) \end{array}$	-380.7^{*} (206.4)	-206.0^{**} (86.7)	-6.687 (5.893)	67,064,000 (71,686,000)
Wells	$\begin{array}{c} 0.331 \ (1.677) \end{array}$	$\begin{array}{c} 0.0343 \\ (0.0434) \end{array}$	$1.492 \\ (1.038)$	$\begin{array}{c} 0.0665 \\ (0.332) \end{array}$	$\begin{array}{c} 0.0124 \\ (0.0176) \end{array}$	-4,868 (4,852)
Oil (MMbbl)	-14.91 (32.34)	3.481^{***} (1.246)	61.27^{*} (33.01)	17.88 (17.17)	-0.181 (0.328)	$^{-6,722}_{(79,525)}$
Completions	$\begin{array}{c} 6.291^{*} \\ (3.662) \end{array}$	-0.0305 (0.0961)	-5.930^{***} (2.049)	$0.468 \\ (0.729)$	$\begin{array}{c} 0.0218 \\ (0.0403) \end{array}$	-11,509 (16,272)
$Colorado_{2014+}$	-459.4 (831.1)	-26.50 (54.30)	861.8 (652.2)	-211.5 (154.3)	-4.653 (5.635)	5,201,000 (5,609,000)
Facility FE	Yes	Yes	Yes	Yes	Yes	Yes
Region-Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Ν	1,055	1,055	1,055	737	716	716

Standard errors in parentheses (clustered at the parent firm level)

* p < 0.10, ** p < 0.05, *** p < 0.01

Levi Marks