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1 Introduction
From 2008 to 2016 more than 50% of new electricity generation capacity within the U.S. has been

from investments in wind and solar. At the same time, there has been a precipitous decline in the

number of coal powered electricity generating units (EIA, 2017). While the environmental benefits

of this market transition have been given significant attention, the private benefits associated with

reduced operating costs can be just as large, if not larger (Callaway, Fowlie, and McCormick,

2018). This is because renewable generation does not require fuel to generate electricity, whereas

steam and combustion generators do. The extent to which this reduced operating cost lowers the

market price of electricity, or increases profit for the producers, has implications for investment

incentives, incidence, public policy, and market design. To address this issue, I use detailed micro

data on firm specific strategies to quantify the price reduction and consumer surplus associated

with short run increases in renewable generation, taking into account the competitive behavior of

market participants, for a large wholesale electricity market in the Midwest United States from

2014 to 2016.

In wholesale electricity markets where demand is highly inelastic in the short run, emission

costs can be perfectly passed-through to the market price (Fabra and Reguant, 2014). In con-
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trast, the cost savings associated with increased renewable generation might not pass-through to

the wholesale price for a number of reasons. For one, the electricity market is comprised of hori-

zontally integrated market participants owning multiple generating units, including wind turbines

and conventional electricity generators.1 In theory, this imperfection in competition has the po-

tential to perfectly offset the price reduction from increased renewable generation under Cournot

Competition (Acemoglu, Kakhbod, and Ozdaglar, 2017). In addition, not all market participants

benefit from increased renewable generation, only those that own wind turbines. When there are

firm specific cost shocks, the price reduction is expected to be less than the change in cost (Sweeny

and Muehlegger, 2017). Finally, there is a known incentive to withhold generation in a wholesale

electricity market structured as a multi-unit uniform price auction (Ausubel et al., 2014). This

incentive is proportional to the total quantity produced by a market participant (Wolfram, 1998),

and wind generation is an exogenous increase in the quantity produced by diverse firms. For these

reasons it is important to empirically evaluate how the market price changes relative to what would

be expected by economic theory.

Many papers have evaluated the integration of renewable generation in electricity markets,

uncovering a “merit order effect” where low cost generation displaces high cost generation and

lowers the market price, as shown in Figure 1. These papers either consider a simulation model

(Sensfuß, Ragwitz, and Genoese 2008; McConnell et al. 2013), or empirically estimate the change

in price due to renewable generation (Woo et al. 2011; Cludius et al. 2014; Clò, Cataldi, and

Zoppoli 2015; Woo et al. 2015, 2016). The results are location specific, often determined by the

fuel mix and fuel prices, and are not trivial in magnitude. For example, Woo et al. (2016) find that

a one gigawatt hour (GWh) increase of wind generation in California lowers the wholesale market

price by $1.5 to $11.4 per megawatt hour. This implies average hourly wind generation can lower

total market revenue by millions of dollars per day.2 While the estimates provided in these papers

1I define conventional electricity generators as steam, combustion, hydrological, or nuclear powered alternating current
electricity generators.

2The average hourly wind generation is California is around 1 GWh and the total load is around 24 GWh. If 1 GWh of
wind generation reduces the price by 6.5 $/MWh, for 24,000 MWh in a hour, for twenty-four hours, revenue declines
by 3.7 million USD that day.
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are informative, they either assume a competitive economic dispatch or provide no context for how

we would expect the price to change.
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Figure 1: The Merit Order Effect of Increased Renewable Generation. Electricity markets are conceived as a Merit
Order, where the lowest cost resources have merit and are dispatched first. When wind turbines generate electricity,
it is believed they displace higher cost units as wind generation shift the supply curve to the right. As a result of the
supply shift the equilibrium price of electricity decreases, from P0 to P1, displacing higher cost electricity generating
units.

My contribution to the this literature is two-fold. First, I derived an analytical expression for

the merit order effect as a function of fundamental market components: the slope of supply, the

slope of demand, and a parameter for every market participant’s conduct. This provides intuition
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for the conditions under which renewable generation is expected to have the largest impact on

price. Second, I exemplify the importance of firm behavior by showing how this analytical merit

order effect changes under two contrasting modeling assumptions. One model assumes market

participants submit bids equal to their cost of production, the other is supply function equilibrium

(SFE) framework of Klemperer and Meyer (1989), as applied to electricity markets by Hortacsu

and Puller (2008). In this imperfectly competitive SFE model, there is an incentive for firm’s to

withhold their generation offer as in Acemoglu, Kakhbod, and Ozdaglar (2017); Ausubel et al.

(2014).

In application I consider a third, less structural, alternative that estimates parameters of conduct

for every firm in MISO. I do this by observing how the supply functions submitted by market par-

ticipants change during windy hours.3 These supply functions represent the quantity each market

participant is willing to generate at a given price, ex-ante, therefore any inference is in regards to

the market participant’s strategy. While a large number of market participants do not change their

supply function in response to increased wind generation, diverse market participants that own

both wind turbines and conventional generation assets tend to offer less electricity from their con-

ventional generators.4 These market participants have an incentive to use their conventional assets

to prevent price reductions, as the quantity produced from their wind turbine is not marginal.

This shuffling of electricity generation by resource type within a particular market participant’s

portfolio has important implications for our understanding of wholesale electricity markets. In an

ideal competitive wholesale market, the lowest cost resource is given priority and replaces higher

cost resources when available. As a result, wind generation should displace the highest cost gener-

ating unit. However, when market participants reduce the quantity they offer when their own wind

turbines are generating electricity, their wind generation is replacing their own units regardless of

the cost to run those units. This inefficiency reduces total economic surplus, and transfers the sur-

plus from consumers to producers of electricity. The producers owning wind turbines have all of

3Fabra and Reguant (2014) use a similar method to see how a market participant’s generation offer changes with
emission credit prices in Spain.

4I use the adjective diverse to define market participants that own wind turbines and conventional electricity generators.
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the benefit of lower fuel cost without the reduction in the market price. Conversely, the consumers

of electricity in the wholesale market do not get the benefit of lower prices.5

Renewable generation has had a substantial impact on the price of electricity and has increased

consumer surplus in the wholesale market overall. With the detailed data and analytical predictions

on how the price should decline, I make credible claims regarding the change in consumer surplus

due to increased renewable generation. I calculate this for both the perfect competition and the sup-

ply function equilibrium framework, showing over 70% of consumer surplus disappears if diverse

market participants withhold perfectly in line with their incentives. Using empirical estimates of

physical withholding due to renewable generation, I quantify the change in consumer surplus due

actual physical withholding observed in MISO. While the reduction in consumer surplus is less

than what would be expected in the supply function equilibrium framework, physical withholding

by diverse generators has reduced consumer surplus by 2.2 to 3.2 billion USD from 2014 to 2016,

equivalent to 15 to 22 USD per person per year.

The paper proceeds as follows, section 2 outlines a general framework for understanding how

renewable generation, in particular wind, impacts the price of electricity in wholesale markets.

Section 3 provides context by describing the wholesale electricity market I study, the data I use,

and estimates of the change in price under the two assumptions on firm conduct. Section 4 turns

to micro-data on firm strategies, showing evidence of physical withholding during windy hours.

Section 5 summarizes the implications of withholding for consumer surplus, section 6 concludes.

2 Wind generation in wholesale electricity markets
The following is intended to model a wholesale electricity market operating as a multi-unit uniform

price auction that allows for diverse market participants and a degree of low variable cost renewable

generation. Demand for electricity is determined by Load Serving Entities, predominately utilities,

that charge customers a rate for electricity in the retail market.6 These Load Serving Entities

submit demand bids for each hour that can be price sensitive. I model aggregate demand at time

5Consumers in wholesale electricity markets are typically utilities that serve residential, commercial and industrial
customers. It is possible the producers and consumers are vertically integrated, which I do not observe.

6Load Serving Entities in wholesale markets can also be generators of electricity if they are vertically integrated.
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t as Dt(p) = dt(p)+ εt where dt(p) is the deterministic component of demand as a function of

price that can be forecasted and εt is a random variable representing fluctuations in the quantity

demanded. I model εt to be an i.i.d. random variable with expectation equal to zero.

Supply in the wholesale electricity market is provided by market participants, which I denote by

the subscript o, who own multiple electricity generating assets including coal, gas, nuclear, wind,

or hydrological based resources. Each conventional unit owned by market participant o, denoted

by the subscripts k ∈ Ko, submits a unit-specific supply curve as a function of price, skt(p). This

offer curve represents the quantity the market participant o is willing to produce from unit k at

time t for price p. I consider the market participant’s aggregate supply sans wind generation as

Sot(p) = ∑k∈Ko skt(p). When the uniform market clearing price is p̂, the market participant will

produce Sot (p̂) = ∑k∈Ko skt (p̂) with costs Cot (Sot (p̂)) and revenue p̂Sot (p̂).

Wind at time t is modeled by an aggregate quantity, Wt that is decomposed in to a deterministic

forecasteable quantity, wt , and a random variable, ωt , such that Wt = wt +ωt where wt is common

knowledge to all market participants. Similar to εt , ωt is an i.i.d. random variable with expectation

equal to zero.7 The proportion of wind that is owned by market participant o is denoted by θo ∈

[0,1], with ∑o θo = 1. This implies the amount of wind generated by market participant o is θoWt .

As a simplification, this modeling assumption states that the electricity generated by wind for

any market participant is directly proportional to their wind generation capacity.8 In this model I

assume that wind generation always clears at the equilibrium because of its low variable cost.9

The price concept most common in U.S. wholesale electricity markets is a Locational Marginal

Price (LMP). This price represents the marginal cost of increasing energy production at any given

moment and at any given location within the market, and therefore varies by location (at differ-

ent pricing nodes) and by time (typically at 5 minute intervals). The LMP can be decomposed

7It is possible that wind shocks are correlated over time, or with demand. It is not essential to the results presented.
8While this is restrictive, I relax the assumption in the empirical application.
9I assume the variable cost of production for wind turbines is zero as it does not require fuel. There are other variable
operation and management cost associated with wind turbines, but the Federal Renewable Energy Production Tax
Credit is larger than these costs. It is possible that wind generation can be curtailed manually, however the market I
study, MISO, has incorporated wind generation as part of the economic dispatch since 2011, resulting in a curtailment
rate of less that 1%.
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into three exclusive components: the Marginal Energy Component (MEC) determined as the price

where supply equals demand at a load-weighted reference node, marginal congestion cost associ-

ated with the shadow price of system transmission capacity constraints and out of merit dispatch,

and marginal losses associated with transmitting the electricity over long distances. At any given

moment, the MEC is the same at every location within the market while the losses and congestion

components vary by node.10 Analytically, I consider the price p to represent the MEC of the LMP.

For most hours, the MEC is the largest component of the LMP.

2.1 Market Equilibrium and the Analytical Merit Order Effect

Moving forward, I will suppress the time subscript for notational ease. The market operator takes

the supply offers as given, observes the realized demand and wind shocks, ε and ω , to solve for

the dispatch quantity for each firm and the price received in accordance with a security constrained

dispatch algorithm. Outside of security constraints and reliability concerns, we can think of the

market clearing as follows:

d(p)+ ε︸ ︷︷ ︸
demand D(p)

= ∑
o

So(p)︸ ︷︷ ︸
conventional supply

+w+ω︸ ︷︷ ︸
wind W

(1)

Implicitly differentiating the market clearing condition with respect to total wind generation, W ,

gives the equilibrium effect of increased renewable generation on wholesale market price.11

d p
dW

=−
1+∑o

∂So(p)
∂W

∑S′o(p)−d′(p)
(2)

Where ′ denotes the partial derivative with respect to the function’s main argument. Equation 2

is the rate at which an increase in renewable generation impacts the equilibrium price, what I am

calling the analytical merit order effect. This value depends on the supply function slope, demand

slope, and the strategic response by market participants. The intuition of Equation 2, when demand

is inelastic and ∂So(p)
∂W is equal to zero, is shown in Figure 1 where the change in the price of

electricity is determined by the difference in price submitted for the marginal unit, − 1
∑o S′(p) . This

10Some markets are known for very high and sometimes negative prices at times, this is typically because of the
congestion and loss components.

11I assume that the quantity demanded does not depend on the quantity of wind generated, that is ∂D(p)
∂W = 0.
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can be thought of as the pass-through of increased renewable generation. This is related to, but

different from, the conventional pass-through rate of a cost shock or tax. 12

Electricity markets are often considered to be imperfectly competitive because of capacity and

transmission constraints, a degree of market power, as well as vertical and horizontal relations.

I incorporate competitive conduct into Equation 2 with the inclusion of ∂So(p)
∂W in the numerator.

Without placing structure on the market or market participants’ incentives it is impossible to sign

this value. The sign of this term suggests the extent to which increased renewable generation has

a pro- or anti- competitive effect on firm’s behavior. If the term is positive the market participant

offers more generation quantity to the market at any given price in response to increased renewable

generation. This pro-competitive outcome arises if the firm is trying to ensure their generation

clears in the market, and is not displaced by the increased renewable generation.13 The implications

is that renewable generation would decrease the price by more than the change in cost. Conversely,

when the term is negative, the supplier is offering less quantity to the market at any given price.

This anti-competitive outcome would be an attempt by the firm to keep the price high, and offset

the lower price associated with increased renewable generation.

2.2 Market Participants’ Strategy

To understand how a firm might change their strategy in response to increased renewable gen-

eration, I consider two models of the market participants’ behavior. One model assumes market

participants have strategies as if they are in a perfectly competitive wholesale electricity market, the

other uses a supply function equilibrium framework. These will provide two different predictions

for ∂So(p)
∂W , implying different values for the analytical merit order effect, d p

dW . For each predic-

tion, I use the detailed data I have on market hourly supply and demand to explicitly calculate the

analytical merit order effect.

In a perfectly competitive market, firms are price takers and submit a supply function that

12To show this, consider the market equilibrium with a unit tax, d(p) = ∑So(p− t), under perfect competition.
Implicitly differentiating the market equilibrium with respect to t uncovers the well-known pass-through formula
d p
dt = ∑S′o

∑S′o−d′ =
1

1+ εD
εS

where εD and εS denote the own-price and market supply elasticities respectively.
13Ciarreta, Espinosa, and Pizarro-Irizar (2017) finds evidence of this in the Spanish electricity market by looking at

the difference in the offer curves over long periods of time.
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outlines the inverse of their marginal cost of production. This would be independent of W implying

that ∂So(p)
∂W = 0. Substituting this into Equation 2 we have that

d pcomp

dW
=− 1

∑S′o(p)−d′(p)
(3)

and for an observed quantity of wind based generation in an hour, the total price effect would be

d pcomp =−
1

∑S′o(p)−d′(p)
dW (4)

From an incidence perspective, this represents the upper bound of the price reduction associated

with increased renewable generation and can be used to calculate to the potential consumer surplus

available.

Conversely a firm with market power might internalize the benefits associated with increased

renewable generation. Figure 2 provides the intuition. When a market participant with market

power is considering the incentives to withhold, they are comparing a higher price and smaller

quantity to a lower price and larger quantity. When this market participant owns a wind turbine

that is also generating electricity, they receive additional benefit of increasing the price directly

proportional to the quantity of electricity generated by their wind turbine. This is because they

receive additional revenue from the wind turbine, as they are infra-marginal, but do not incur any

cost.

I use the supply function equilibrium framework (SFE) outlined by Hortacsu and Puller (2008)

to derive the market participant’s best response function.14 Market participants choose the So(p)

that maximizes their expected profit, with the expectation taken over the uncertainty in price due

to wind and demand shocks. Appendix A proves the optimal strategy of market participant o with

conventional assets and wind turbines can be characterized by[
p−C′o(So(p))

]
= [So(p)+θoW ]

−1
RD′o(p)

(5)

where RD′o(p) = d′(p)−∑ j 6=o S′j(p) is the slope of the residual demand curve for owner o. It is

clear that an increase in the amount of electricity produced by wind, W , will be associated with a

14A major component in this model is forward contracts. These are used to identify firm behavior or cost of production.
I ignore this component of the model as it is not directly tied to wind production. This is in contrast to Ito and Reguant
(2016) who focus exclusively on wind generation and forward contracts in the Iberian Peninsula.
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Figure 2: Incentive for Diverse Market Participants to Curtail. When a firm with market power considers the
incentives to curtail they trade off a lower price with a larger quantity with a higher price and a smaller quantity.
This trade off is represented in the top figure by the blue and light salmon rectangles. When the market participant is
diverse, owning wind turbines and conventional generators, they receive additional revenue from a high price on their
wind based assets. In the bottom panel, the green rectangle represents the revenue from the wind turbine if the firm
does not curtail and the light salmon square shows the additional revenue received from the wind based asset if they
curtail.
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reduction in the supply curve offered to the market. For simplicity I assume that the marginal cost

is constant near the equilibrium price, C′′o (S(p)) = 0, and that market participants do not change

the slope of their offer curve in response to increased renewable generation, ∂S′i(p)/∂W = 0,∀i,

near the equilibrium price.15 This provides ∂So(p)
∂W = −θo, a market participant will reduce their

generation offer in response to a unit increase in renewable generation by the proportion of total

wind generation they own.16

All market participants that do not own wind turbines have θo = 0 implying ∂So(p)
∂W = 0. Sub-

stituting the values of ∂So(p)
∂W into Equation 2, we have that the analytical merit order effect is

d pSFE

dW
=−

(
1− ∑

o∈V
θo

)
1

∑S′o(p)−d′(p)
(6)

where V is the set of market participants that own both wind turbines and conventional assets. In

aggregate this strategic withholding implies increased renewable generation will have the following

impact on the market price

d pSFE =−

(
1− ∑

o∈V
θo

)
1

∑S′o(p)−d′(p)
dW (7)

This shows the impact on price paid by consumers in wholesale electricity markets depends on the

ownership of the wind turbines. If all wind turbines are owned by market participants that also own

conventional assets, then ∑o∈V θo = 1 and there would be no effect on price. Conversely, if wind

turbines were owned exclusively by independent producers, then ∑o∈V θo = 0 and the expected

price change would be identical to Equation 4.

3 The Midcontinent Independent System Operator and Data
The Midcontinent Independent System Operator (MISO) was formed in 1998 and approved as the

first Regional Transmission Organization in the US by the Federal Energy Regulatory Commission

in 2001.17 The operator serves as a non-profit organization managing transmission and dispatch of

electricity generating units within its foot print through a variety of market operations, focusing on

15Empirical evidence validates the assumptions regarding the change in the slope of supply at equilibrium prices.
16More broadly, this comparative static suggests that a market participant will withhold their conventional generation

by the quantity of wind generated, one for one. Overall they are generating the same quantity of electricity, however
they are replacing their conventional generation with wind generation.

17MISO was formerly known as the Midwest Independent System Operator up until 2013
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reliability, efficiency, and the development of electricity resources. Since the incorporation of the

Southern Region in 2013, MISO has become the the largest wholesale electricity market within the

United States with a total of 180 gigawatts of generation capacity, and conducts market operations

from North Dakota to Michigan to Louisiana. This includes part of The Great Plans, where there

is the largest concentration of wind turbines within the United States. MISO operates a number

of markets to achieve its goals in distribution and reliability including a day ahead and real time

wholesale electricity similar to the model described in section 2. These markets capture almost

all electricity generation and transmission activities within MISO’s footprint that are not part of

bilateral contracts.18

MISO publishes data regarding their market operations on their website as Market Reports.

The primary data I use are the daily real time generation offers by generation units from January of

2014 to December of 2016.19 I focus on the real time market because I am looking at actual wind

generation, not forecasts. These data provide, for every hour, a time consistent unit and owner

identification code, the generating unit type (steam, combustion, wind turbine, hydro), the ex-post

quantity generated and LMP received at five minute intervals, as well as details on the generating

unit’s supply bid. Unit-level data on the hourly LMP received and the quantity generated for

all units are summarized in Table 1. The sample average unit LMP is $27.37/MWh with wind

turbines receiving a lower than average LMP and combustion turbines receiving the highest LMP

on average. This is because the LMP is lower when wind turbines generate electricity, while

the combustion turbines only generate electricity when the LMP is high. In terms of unit level

generation, steam turbines and combined cycle units produce the most electricity per hour. Overall

I observe a total of 1,327 units during the sample, of which 213 are wind turbines.

As show by Equation 7, the impact of renewable generation on the price of electricity can

depend on who owns the wind turbines so it is important to know the portfolio of unit types owned

by every market participant. I take advantage of the time-invariant owner code associated with

18A market report from 2011-2012 suggests 20 to 30% of electricity generated in a year is through bilateral contracts.
These bilateral contracts include agreements with groups outside of MISO and grandfathered contracts within MISO.

19The start date is a few months after when the Southern Region was integrated into MISO. The end date is when
MISO stopped reporting unit specific identification numbers to preserve the privacy of the asset owners.
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Table 1: Unit Level Summary Statistics

Unit LMP USD/MWh Unit-Hour MWh
Mean Std. Dev. Mean Std. Dev. Num. Units Unit-Hour Obs.

Steam-Turbine 28.54 28.99 220.28 235.80 411 6,177,105
Combustion-Turbine 30.13 33.70 55.49 120.50 441 2,602,751
Hydro-Powered 29.66 32.56 14.35 63.13 83 1,405,800
Combined-Cycle 29.59 28.91 276.78 161.64 76 726,195
Wind-Turbine 23.11 27.12 27.61 39.06 213 4,689,910
Other 28.39 30.97 12.04 45.03 103 754,317
Total 27.37 29.82 114.02 186.56 1,327 16,356,078

Notes: Unit-Hour observations come from MISO Real Time Cleared Offers Market Report From January 1, 2014 to
December, 24, 2016. The MWh produced and price received are reported at 5 minute intervals within a single hour. This
is aggregated by hour using a sum and mean respectively.

the generating units in the supply offer data to measure market participants portfolios, as all units

with the same owner code are owned by the same market participant. I consider the maximum

quantity generated by a unit during the sample period as a measure of its capacity to calculate the

portfolio of assets for every owner code. Figure 3 shows the portfolio for the thirty largest market

participants and their corresponding owner code. It is evident that almost all of these market

participants have diverse assets, and that some of the largest market participants own a sizable

amount of wind generation capacity.

In addition to the micro-data on unit level offers, MISO’s market reports include hourly market

level information on average LMP, the marginal energy component (MEC) of the LMP, the hourly

fuel mix, the number of binding transmission constraints, the shadow price of relieving the binding

constraints, wind forecasts, and net exports. I supplement these data with daily weather measures

from the National Oceanic and Atmospheric Administration averaged across all states in MISO, as

well as daily day-ahead natural gas prices at Henry Hub from the Intercontinental Exchange. The

first panel in Table 2 summarizes these data. This market is large, clearing 71 GWh in a hour on

average. A little more than half this is provided by coal based generators, and a fourth by natural

gas. Wind generation provides almost 5 GWh on average, with a maximum of 13.7 GWh. While

wind generation is a small portion of the market overall, there are moments when wind turbines

produce more electricity than all the nuclear plants with MISO, and wind can meet up to 20% of

13



Figure 3: The capacity and portfolio of the thirty largest market participants in MISO. Capacity is measured as the
maximum MWh produced by a unit during the entire sample period. The bar labels is the Market Participant’s coded
identification number. This shows the large and diverse market participants that own wind and conventional assets.

load during periods of low demand.

Hourly unit level supply offer data include up to ten price-quantity pairs that outline the quantity

each unit is willing to produce at a given market price. I reconstruct unit specific supply curves for

the hour by interpolating the price-quantity pairs on a common support (e.g. from -10 dollars to

100 dollars at an interval of 1 dollar). When appropriate, I extrapolate the quantity offered using

the maximum and minimum quantity offered. To ensure the function is everywhere differentiable

and monotonic I smooth the offer curve using a normal kernel following Wolak (2007). For a set

of price and quantity pairs pikt qikt , i = 1 . . .N for unit k at time t, the smoothed supply function is

ŝkt(p) = ∑
i

qiktΦ

(
p− pikt

h

)
where Φ is the standard normal cumulative distribution function and h is the bandwidth.20 Figure 4

shows all offer curves of a sample unit and sample hour for one hour of day in a month.

To find the slopes at equilibrium, I aggregate all of the generation unit supply curves within

20I use a bandwidth of three dollars, as does Kim (2017). Changing the bandwidth does not alter the results.
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Table 2: Market Level Summary Statistics

Mean Std. Dev. Min. Median Max. Observations

Panel A
Market LMP, USD/MWh 27 20.8 -26.8 23.7 1,571 26,117
Market MEC, USD/MWh 29.9 22.7 -28.7 25.8 1,806 26,117
Market GWh Generated 71.4 12.6 42.1 70.4 116 26,117
Coal GWh 36.8 8.46 16.5 36.6 56.8 26,117
Gas GWh 15.9 6.21 4.57 15.3 43.4 26,117
Hydo GWh .988 .5 .305 .843 3.29 26,117
Nuclear GWh 11.4 1.23 6.1 11.7 13.3 26,117
Other GWh 1.35 .852 .295 1.07 7.74 26,117
Wind GWh 4.96 2.79 .132 4.61 13.7 26,117
Wind GWh, Diverse 3.58 2.1 .0551 3.29 10.2 26,117
Wind GWh, Indpendent 1.37 .722 .0693 1.3 3.61 26,117
Shadow Price of Constraints -.947 1.28 -17.3 -.506 0 26,117
Number of Binding Constraints 3.79 2.65 0 3.17 19.2 26,117
Max Daily Temperature, C 17.6 10.4 -11.7 19.5 33.4 26,117
Natural Gas Price, USD/MMBtu 3.13 1.01 1.49 2.84 7.88 26,117
Net Exports GWh 4.41 1.99 -1.77 4.27 11.6 26,117
Wind Forecast Error, GWh -.00594 .965 -4.13 .00101 4.32 26,093

Panel B
Equilbrium Price, USD/MWh 26.6 7.13 15 25 101 26,117
Supply Slope, ∆MWh/∆

USD
MWh 2,482 1,202 32.5 2,524 6,217 26,117

Demand Slope, ∆MWh/∆
USD
MWh -5.12 6.91 -56.5 -1.99 0 26,117

Notes: Market-Hour observations from January 1, 2014 to December, 24, 2016. Market LMP, from the Nodal LMP
Market Report, is taken as the average of all LMPs with an hour. The MEC is found by subtracting the Loss and Conges-
tion Component from the LMP for each hour. Generation quantity in GWh comes from the Fuel Mix Market Report. The
decomposition of Wind into Diverse and Independent Owners comes from the Cleared Offers Market Report. Diverse is
defined as wind generation that is owned by a market participant that owns assets other than wind turbines. Independent
wind comes from market participants that own only wind based resources. Shadow Price, in thousand USD, and Num-
ber of Binding Constraints comes from MISO’s Real Time Binding Constraint Market Report. Temperature data is an
average of all temperature readings within MISO’s footprint from the Global Historical Climatology Network operated
by NOAA. Wind Forecast Error and day ahead Henry Hub natural gas price and comes from Yes Energy. The wind data
is missing one day of data from June of 2015. Equilibrium Price, Supply Slope, and Demand Slope are recovered from
the offer supply and demand curves. The equilibrium is where the offered supply net of wind equals the demand less of
net exports.
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Figure 4: Two sets of sample offer curves. Each plot shows all offers for a particular unit during one Month Hour.
This showcases the type of variation used in the bid level regression that include month-hour fixed effects. Darker
lines are associated with windier hours. The left plot shows the offer curves for a single unit. The right plot shows the
offer curve aggregated to the owner level.

MISO to obtain a market supply curve.21 Because I am interested in the impact of wind on the price

of electricity, I define the equilibrium as the aggregate supply without using the supply bids by the

wind generating units. At this equilibrium I calculate the local slope of supply and demand as the

difference in the quantity, along the curve, for a one step increase in price. The equilibrium prices

and slopes are summarized in Panel B of Table 2. This price should correspond to the Marginal

Energy Component of the LMP, however are not identical due to out of merit dispatch.

I use the slope of supply and demand, summarized in Panel B of Table 2 to calculate an exact

expression of Equation 3 for every hour in my sample. I do the same for Equation 6 where I use

the fraction of wind owned by diverse market participants in that hour for the value of ∑o∈V θ0.

Table 2 shows that on average the proportion of wind owned by diverse market participants is

72%. The resulting values are summarized as “Analytical Merit Order Effect, Competitive” and

“Analytical Merit Order Effect, SFE” respectively in Table 3. For a one GWh increase in wind

21Here I define the entire MISO region as a single market. I’ve considered other market definitions including subre-
gions within MISO and price clusters similar to Mercadal (2015). Because the Marginal Energy Component is the
same for all units in MISO, and I am interested in how wind impacts the Marginal Energy Component, any other
market definition is inappropriate.
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Figure 5: The reconstructed market supply and demand curves, in black, for a sample hour form the equilibrium
price. The equilibrium is denoted by the dashed blue lines. The calculated merit order effect for a one unit increase
is shown by the dashed red line. Walking down the merit order effect from the equilibrium shows the expected price
reduction at with the yellow dashed lines.

generating for a given hour, we’d expect the price to decrease by $0.63/MWh if market participants

were acting competitively, and $0.18/MWh if market participants were withholding according to

their incentives. For context, the same increase in wind has been associated with a 3.18% price

decline in Spain (Böckers, Giessing, and Rösch, 2013), 0.8 to 2.3e/Mwh price decline in Germany

(Cludius et al., 2014), 1.5 to 11.4 $/Mwh price decline in California (Woo et al., 2016), and 3.9 to

15.2$/Mwh price decline in Texas (Woo et al., 2011).22

To find the total price effect, I take the analytical merit order effect for an hour and multiply

this by the quantity of electricity generated by wind for that hour. This provides values of d pcomp

and d pSFE from Equation 4 and Equation 7. The total price effect is $3.5/MWh in a perfectly

competitive market and around $1/MWh according to the supply function equilibrium framework.

These values vary tremendously, ranging from near zero to over $100/MWh. This is consistent

with the wholesale market where prices fluctuate greatly and can reach over $1,000/MWh.

22It is important to note these numbers include the impact on wind generation on congestion and transmission.
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Table 3: Analytical Merit Order Effect

Mean Std. Dev. Minimum Maximum Observations

Analytical Merit Order Effect, comp. -0.63 0.86 -30.73 -0.16 26,117
Analytical Merit Order Effect, sfe -0.18 0.24 -8.97 -0.03 26,117
d pcomp,USD -3.54 7.84 -360.81 -0.04 26,117
d ps f e,USD -0.97 2.10 -92.99 -0.02 26,117

Notes: Analytical Merit Order Effect comes from the theoretical prediction of the impact of 1 GWh of wind on the price
of electricity with the corresponding assumptions on the price of electricity. Competition corresponds to Equation 3,
the supply function equilibrium (sfe) corresponds to Equation 6. The values of d pcomp,s f e come from Equation 4 and
Equation 7 respectively, where the analytical merit order effect is multiplied by the GWh of wind based electricity. The
slopes of supply and demand come from the equilibrium without wind bids and demand less of net exports. The value of
∑o∈V θo is set equal to the proportion of wind that is generated by diverse market participants in a hour.

4 Evidence of Strategic Curtailment
While the merit order effects presented in Table 3 are informative, they rely on modeling assump-

tions. Here, I instead use detailed data on the strategies of all market participants for all hours to

directly test for physical withholding. I begin by aggregating the conventional unit supply curves,

described in section 3, by owner codes for every hour. This gives me a hourly supply curve of the

conventional assets for every market participant on a common support, every $3 interval between

0 and 60 dollars. These curves are defined by a set of b = 1 . . .21 price quantity pairs, (pb,qotb),

for owner o at time t. The set of pb are the same for all market participants, for all hours, only the

quantities offered at these prices change.

To directly test for strategic physical withholding, I see how the quantity offered at a given

price changes in response to increased renewable generation. The general estimating equation of

interest is

qotb = γ0ClearedGWht + γ1NetExportst +δWindGWht +Xβ +ηopbymh + εotb (8)

where qotb is the quantity offered, in MWh, by market participant o at time t and price bin pb. X

represents other determinants of a market participant’s strategy including daily temperature mea-

sures, daily natural gas prices, the hourly number of binding constraints in MISO, and the hourly

shadow price of all constraints. Identification comes from owner specific, month-of-sample by

hour, fixed effects for every price bin, ηopbymh. This captures the average quantity offered by mar-

ket participant o at price pb within a month-of-sample hour (e.g. September 2014, 4pm). Therefore
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the coefficient δ is identified off the deviation from the market participants month-of-sample hour

average supply curve. Because these data represent the ex-ante strategy of a firm, withholding the

quantity offered at a given price would imply that δ < 0. The supply function equilibrium theory

presented in section 2 suggest the coefficient of δ should be (1) negative for diverse market partic-

ipants that own both wind turbines and conventional assets and (2) larger in response to a market

participants own wind generation.

Table 4 shows the estimate of the δ in Equation 8 is negative. Overall, a 1 GWh increase in

wind generation in an hour is associated with a 2 MWh reduction it the quantity offered at a given

price on average across all market participants. In column (2), I interact WindGWht with a indica-

tor variable for if a market participant owns wind turbines and conventional assets. This shows that

diverse market participants reduce the quantity offered by 10 MWh on average, while the indepen-

dent market participants only reduce the quantity offered by 0.8 MWh. Finally, in column (3) I

decompose WindGWht into the quantity of electricity generated by independent wind turbines and

the quantity of electricity generated by wind turbines owned by diverse market participants. This

shows that the quantity offered by diverse market participants is reduced the most in response to

diverse wind generation.

The estimates presented in Table 4 are the average effects for all market participants, or at best

separated by if a market participant owns wind turbines. I expect there to be substantial hetero-

geneity in how market participants respond to increased renewable generations because they vary

in the portfolio of wind based generation and their bidding sophistication.23 I interact WindGWht

in Equation 8 with the owner code of every market participant to get a unit specific estimate of δ .

In particular, I estimate the parameters in the following equation

qotb = γ0ClearedGWht + γ1NetExportst +δoWindGWht ·OwnerCodeo +Xβ +ηopbymhεotb (9)

and plot the density of the coefficients in Figure 6 by if the market participant is diverse.24 This

shows the coefficients for the market participants that do not own wind generation are near zero,

23Hortacsu and Puller (2008) show evidence of imperfect bidding behavior by market participants in Texas’s ERCOT
market.

24Both densities use a Epanechnikov kernel with a bandwidth of 2 MWh.
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Table 4: Curtailment of Offer Curve in Response to Wind Generation

(1) (2) (3)
Market GWh Generated 2.830∗∗∗ 2.830∗∗∗ 2.831∗∗∗

(0.443) (0.443) (0.442)

Wind GWh -2.338∗∗∗

(0.598)

Not Diverse Owner ×Wind GWh -1.101∗∗∗

(0.223)

Diverse Owner ×Wind GWh -10.78∗∗

(3.752)

Not Diverse Owner ×Wind GWh, Indpendent -2.269
(1.387)

Diverse Owner ×Wind GWh, Indpendent -6.578
(9.648)

Not Diverse Owner ×Wind GWh, Diverse -0.702
(0.552)

Diverse Owner ×Wind GWh, Diverse -12.20∗

(5.085)
Owner-Price-Year-Month-Hour Fixed Effects Yes Yes Yes
Other Controls Yes Yes Yes
Observations 28,777,140 28,777,140 28,777,140
R-squared 0.97 0.97 0.97

Notes: Data comes from MISO Real Time Offer Market Reports January 1, 2014 to December 24, 2016. This
sample is all offers by market participants during peak hours, defined as 3pm to 8pm inclusive. Offer curves
are are interpolated and defined at 3$ intervals between 0 and 60 USD. All unit level offers are aggregated
to the market participant. One observation is the quantity offered by all units owned by the same market
participant at a given price for that hour. Diverse market participants own wind turbines and conventional
electricity generating assets. Wind Based GWh, Independent, is wind based electricity generated by market
participants that own only wind turbines. Likewise, Wind Based GWh, Diverse is wind based electricity
generated by diverse market participants. All specifications include fixed effects for the average quantity
offered by the market participant at the price for a given month-hour. Other controls include daily temperature,
daily natural gas price, hourly number of binding constraints, hourly shadow price of all constraints. Standard
errors, in parenthesis, are clustered by month of sample and owner. ∗, ∗∗, ∗∗∗ denote p-value less than 0.1,
0.05, and 0.01 respectively for each hypothesis test. The hypothesis test for all coefficients is H0 : β = 0 vs.
H1 : β 6= 0.
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where as the density for diverse market participants has an obvious left skew and is centered below

zero.

Figure 6: Kernel density of curtailment coefficients for ever market participant separated by the market partici-
pant’s portfolio diversity. Curtailment coefficients are how the market participants offer curve changes in response
to increased wind generation controlling for the month/year/hour/price/owner average quantity. Both densities use a
Epanechnikov Kernal with a bandwidth of two dollars.

Finally, we are only interested in withholding of the quantity offered if it happens at or below

the equilibrium price. To see how exactly a market participant is withholding their generation offer

I estimate a separate withholding coefficient for all market participants at every price bin. Figure 7

shows the point estimates and confidence intervals of four large and diverse market participants.

This shows the market participants respond more to their own wind than to the wind generated by

others. This is consistent with the theory presented in section 2. These diverse market participants

are withholding to increase the price received by their own wind turbines, not just to offset the

price decline on their conventional assets.
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Figure 7: Curtailment coefficients at every price bin for a select number of large and diverse market participants.
Estimates come from estimating Equation 8 with flexible price bins interacted with WindGWh, separately for each
market participant. Confidence interval uses robust standard errors.
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5 Implications for Consumer Surplus
Using the analytical merit order effect for the expected price change due to increased renewable

generation it is possible to make claims regarding consumer surplus in the wholesale electricity

market. I model consumer surplus from electricity during hour t at market price p as

CSt(p) =
∫

∞

p
Dt(x)dx

where Dt(x) is the demand for electricity at time t and price x. To see how consumer surplus

changes due to an increase in the quantity of wind, Wt , I take the total derivative to get

dCSt

dWt
=−Dt(p)

d p
dW t

with the change in consumer surplus during the entire sample period would be

∆CS =−∑
t

Dt(p)
d p
dW t

dWt . (10)

When calculating consumer surplus, I consider three alternative values for d p
dW . One is the pre-

diction under the assumption of price taking behavior, where d pcomp
dW t =−

1
∑o S′o(p)−d′(p) . For the sec-

ond, I considered a supply function equilibrium framework with d ps f e
dW t =− [1−∑o∈V θo]

1
∑o S′o(p)−d′(p)

where ∑o∈V θo is the proportion of wind owned by diverse market participants. Third, I use the

estimates of physical withholding for diverse market participants from Equation 9 as an estimate of

∂So
∂W .25 Table 5 shows the estimates of δo for all diverse market participants. To calculate consumer

surplus using the estimated withholding coefficients, I substitute the value of δ̂o in for ∂So(p)
∂W in

Equation 2. The sum of these estimates, presented in the bottom of Table 5, suggests that over

30% of wind generation is replacing withheld offers by diverse market participants.

All together this provides me with three separate estimates of consumer surplus, all varying in

25To ensure I am looking only at relevant bid prices, I discard any observations where the market price is more than
the price bin plus three, pb +3.I add three to the price bin because the price bins are at three dollar intervals.
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Table 5: Owner Specific Curtailment of Diverse Market Participants

(1) (2)
Owner.Code=122062454 ×Wind GWh -16.95∗∗∗ (0.206) -22.61∗∗∗ (0.390)
Owner.Code=122062463 ×Wind GWh 0.108 (0.222) -1.345∗∗ (0.428)
Owner.Code=122062474 ×Wind GWh -1.890∗∗∗ (0.198) -3.185∗∗∗ (0.376)
Owner.Code=122062480 ×Wind GWh -22.57∗∗∗ (0.205) -31.25∗∗∗ (0.390)
Owner.Code=122062486 ×Wind GWh -2.579∗∗∗ (0.202) -3.465∗∗∗ (0.386)
Owner.Code=122062512 ×Wind GWh -13.25∗∗∗ (0.192) -19.94∗∗∗ (0.363)
Owner.Code=122062521 ×Wind GWh -1.221∗∗∗ (0.222) -2.515∗∗∗ (0.420)
Owner.Code=122062548 ×Wind GWh -1.871∗∗∗ (0.192) -3.279∗∗∗ (0.361)
Owner.Code=122062550 ×Wind GWh -36.17∗∗∗ (0.192) -38.63∗∗∗ (0.365)
Owner.Code=122062561 ×Wind GWh -3.990∗∗∗ (0.193) -3.966∗∗∗ (0.363)
Owner.Code=122062564 ×Wind GWh -0.0728 (0.195) -1.687∗∗∗ (0.370)
Owner.Code=122062581 ×Wind GWh -6.078∗∗∗ (0.202) -7.241∗∗∗ (0.384)
Owner.Code=122062590 ×Wind GWh -103.9∗∗∗ (0.194) -115.0∗∗∗ (0.367)
Owner.Code=122062603 ×Wind GWh -2.036∗∗∗ (0.191) -4.147∗∗∗ (0.360)
Owner.Code=122062624 ×Wind GWh -2.116∗∗∗ (0.200) -2.951∗∗∗ (0.378)
Owner.Code=122062627 ×Wind GWh -0.582∗∗ (0.195) -2.103∗∗∗ (0.369)
Owner.Code=122062642 ×Wind GWh -7.270∗∗∗ (0.202) -7.196∗∗∗ (0.386)
Owner.Code=122062646 ×Wind GWh -1.131∗∗∗ (0.195) -2.560∗∗∗ (0.370)
Owner.Code=122062647 ×Wind GWh -3.625∗∗∗ (0.206) -7.178∗∗∗ (0.391)
Owner.Code=122062649 ×Wind GWh -14.34∗∗∗ (0.204) -15.39∗∗∗ (0.390)
Owner.Code=125767546 ×Wind GWh -1.974∗∗∗ (0.190) -2.869∗∗∗ (0.357)
Owner.Code=576468110 ×Wind GWh -61.28∗∗∗ (0.193) -66.09∗∗∗ (0.366)
Owner.Code=576468116 ×Wind GWh -11.28∗∗∗ (0.198) -14.22∗∗∗ (0.376)
Owner-Price-Year-Month-Hour Fixed Effects Yes Yes
Controls for Demand Yes Yes
Other Controls Yes Yes
Peak No Yes
Sum of Coeficients -316.06 -378.86
Observations 7,722,893 2,058,174
R-squared 0.97 0.98

Notes: Data comes from MISO Real Time Offer Market Reports January 1, 2014 to December 24, 2016.
This sample is all offers by diverse market participants. Column (1) uses the full sample, while column (2)
is only for peak hours, defined as 3pm to 8pm inclusive. Offer curves are are interpolated and defined at $3
intervals between 0 and 60 USD. All unit level offers are aggregated to the market participant. One observation
is the quantity offered by all unit owned by the same market participant at a given price for the hour. Sample
includes all diverse market participants. All specifications include a fixed effect for the average quantity offered
by the market participant at the price for a given month-hour, and control for demand. Other controls include
daily temperature, daily natural gas price, hourly number of binding constraints, hourly shadow price of all
constraints. Standard errors, in parenthesis, are clustered by month of sample and owner. ∗, ∗∗, ∗∗∗ denote p-
value less than 0.1, 0.05, and 0.01 respectively for each hypothesis test. The hypothesis test for all coefficients
is H0 : β = 0 vs. H1 : β 6= 0.
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the degree to which market participants withhold their generation offer

∆CScomp = ∑
t

Dt(p)
1

∑o S′ot(p)−d′t(p)
dWt (11)

∆CSSFE = ∑
t

Dt(p)
1− (∑o∈V θo)t

∑o S′ot(p)−d′t(p)
dWt (12)

∆CSobs =

[
1− ∑

o∈V
δ̂o

]
∑
t

Dt(p)
1

∑o S′ot(p)−d′t(p)
dWt (13)

I calculate the value of Equation 11, Equation 12, and Equation 13 using all hours between January

1st 2014 and December 24th 2016. I do this in two ways to account for import and exports of

electricity within MISO. One uses net generation within MISO as a proxy for demand net of

imports. The other considers total demand within MISO.

Table 6 presents all estimates of the total change in consumer surplus, as well as market revenue

over the sample period. I normalized these totals to a value per person per year assuming 50

million people live within MISO’s footprint.26 The potential consumer surplus from increased

renewable generation, according to Equation 11, is huge, seven to ten billion USD over three years,

equivalent to 47 to 68 USD per person per year. This number is greatly diminished if diverse market

participants withhold perfectly, as calculate by Equation 12. The total consumer surplus would be

only 1.9 to 2.7 billion USD, or 13 to 18 USD per person per year. Using the observed withholding

coefficients to calculate consumer surplus, as in Equation 13, the surplus per person per year is 32

to 46 USD, suggesting that observed withholding by diverse market participants reduces consumer

surplus by 15 to 22 USD per person per year.

6 Conclusion
The increase in renewable generation capacity within the United States has created immense value

by providing low marginal cost electricity. I first derive an analytical expression for how increased

renewable generation should impact the price of electricity. I show the strategic response of con-

ventional electricity generators to increased wind generation is an important factor to consider in
26This population estimate is my best guess given that 61 million individuals live in the states of Arkansas, Illinois,

Indiana, Iowa, Louisiana, Michigan, Minnesota, Mississippi, Missouri, North Dakota, Wisconsin according to the
2016 US Census Bureau estimates.
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Table 6: Impact of Curtailment on Consumer Surplus

Demand Less Net Imports MISO Demand
Total, Bil.USD Annual USD/person Total, Bil.USD Annual USD/person

Revenue 58.70 393.93 55.33 371.34
∆CScomp, no curtail 6.96 46.71 10.09 67.75
∆CSobs, observed 4.76 31.95 6.90 46.34
∆CSs f e, full curtail 1.92 12.88 2.74 18.37
∆CScomp−∆CSobs 2.20 14.76 3.19 21.41
∆CScomp−∆CSs f e 5.04 33.84 7.36 49.38

Notes: Time period of interest is from January 1st, 2014 to December 24th, 2016. All calculations come from Equation 11,
Equation 12, Equation 13. Revenue is the sum of Market MEC and market generation quantity in MWh for all hours.
“Demand Less Net Imports” uses the analytical merit order effect and production quantity at the equilibrium where supply
net of wind equals demand less net imports. “MISO Demand” uses the equilibrium where supply net of wind equals total
demand within MISO. Bil. stands for billion. Annual per person calculations divides the total quantity by 2.98 years and 50
million people. This number is the authors best guess for the population within MISO’s footprint based on the cumulative
population of 61 million in the states of Arkansas, Illinois, Indiana, Iowa, Louisiana, Michigan, Minnesota, Mississippi,
Missouri, North Dakota, Wisconsin according to the 2016 US Census Bureau estimates. All numbers are in nominal US
dollars.

price formation. In particular, a supply function equilibrium model with horizontally integrated

generating units predicts that diverse market participants will reduce their generation offer in re-

sponse to an increase of their own wind generation. Using detailed data on supply and demand

from 2014 to 2016 in MISO’s wholesale electricity market, I quantify the expected price reduction

under a model of perfect competition and a supply function equilibrium model with withholding.

I directly test for evidence of physical withholding by diverse market participants using month-

of-sample by hour, price, owner fixed effects. Indeed, it is the diverse market participants that

reduce the quantity offered, and they do it more in response to their own wind generation. This has

important implications for consumer surplus and overall economic efficiency if this withholding

leads to less efficient units having merit in the dispatch order. The analytical merit order effect

I calculate and withholding coefficients I estimate imply increased renewable generation has the

potential to increase consumer surplus by 47 to 68 USD per person per year, however observed

withholding by diverse market participants reduces consumer surplus by 15 to 22 USD per person

per year. This has implications for the market monitor in these wholesale electricity market, as

increased renewable generation might be associated with anti-competitive behavior.

There are a number of policy implications that come from these results as well as avenues for
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future research. For one, the ownership of the renewable generation assets is not neutral to the

incidence of consumer and producer surplus. Wind turbines and solar panels owner by diverse

market participants participating in wholesale markets will not reduce the price of electricity by as

much as the same assets owned by independent market participants or compensated by purchasing

power agreements. Moving forward, it is important to quantify how renewable generation impacts

producer surplus in these wholesale electricity markets. Producers can benefit from increased

renewable generation because it reduces their fuel cost, or can be harmed if it decreases the price

they receive. With accurate information on the cost of production, it would be straight forward

to calculate producer surplus and compare them to my estimates of consumer surplus. Finally,

this paper shows that wind generation might not be replacing the most inefficient generation units

because of profit motives. There might be technical reasons for this as well. Better understanding

why this might be the case can increase the value derived from renewable generation.
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A Appendix: Firm’s incentives

Given the notation presented in section 2, I can characterize market participant o’s profits at time t

as

Πo(So(p)) = p[So(p)+θoW ]−Co(So(p)) (14)
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The optimal strategy employed by the owners of electricity generation assets depends on the un-

certainty with respect to the market clearing price. As modeled there are two different forms of

uncertainty (1) the quantity demanded, ε , and (2) the quantity of wind being produced ω . The

first form of uncertainty, in conjunction with uncertainty over private forward contracts, has been

considered by Hortacsu and Puller (2008); Mercadal (2015). The uncertainty in regards to wind

is novel. I define a probability measure over the realizations of price for a given strategy for a

particular market as follows:

H(p;So(p)) = Pr(p̂≤ p|So)

= Pr(∑
j 6=o

S j(p)+So(p)+w+ω ≥ d(p)+ ε|So)
(15)

Where the second inequality comes from the market clearing condition and the fact that a

lower price is associated with an excess of supply. Using the profit definition with the probability

measure, the market participant wants to maximize their expected profit:

max
So(p)

∫ p̄

p
U [Πo(So(p))]dH(p;So(p)) (16)

We can rewrite dH(p) as Hp+HSS′ where the subscript denotes a partial derivative, and define

J ≡U(Π)[Hp +HSS′]. The first order condition for the Euler Lagrange solution is

JS =
∂

∂ p
JS′

The left hand side can be expressed as

JS =U ′(Π)
∂Π

∂S

[
Hp +HSS′

]
+U(Π)

[
HSp +HSSS′

]
=U ′(Π)

[
p−C′

][
Hp +HSS′

]
+U(Π)

[
HSp +HSSS′

]
Then noting that, JS′ =U(Π)HS, we can express the right hand side as

∂

∂ p
JS′ =U ′(Π)

∂Π

∂ p
HS +U(Π)

[
HSp +HSSS′

]
=U ′(Π)

[
S′p+S+θW −C′S′

]
HS +U(Π)

[
HSp +HSSS′

]
As a result, the Euler-Lagrange condition implies[

p−C′
][

Hp +HSS′
]
=
[
S′p+S+θW −C′S′

]
HS
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which can be simplified to [
p−C′

]
Hp = [S(p)+θW ]HS

Contextually, Hp is the density of prices in the spot market and HS is the change in the price

distribution when participant o increases it’s supply offer.

We can isolate all the random terms as follows:

H(p;So(p)) = Pr(p̂≤ p|So)

= Pr(∑
j 6=o

S j(p)+So +w+ω ≥ d(p)+ ε|So)

= Pr(ω− ε ≥ d(p)−∑
j 6=o

S j(p)−So−w|So)

= 1−Γ

[
d(p)−∑

j 6=o
S j(p)−So−w

]
(17)

Where Γ() is the cumulative density function for the random variable η = ω− ε .

From this expression of the probability measure, we can derive

HS =Γ
′

[
d(p)−∑

j 6=o
S j(p)−So−w

]

Hp =−Γ
′

[
d(p)−∑

j 6=o
S j(p)−So−w

](
d′(p)−∑

j 6=o
S′j(p)

)
We can observe that the residual demand for any market participant is RD(p)= d(p)+ε−∑ j 6=o S j(p)−

w−ω making HS
Hp

an expression for the reciprocal of the slope of the residual demand. This pro-

vides an optimality condition that is related to the inverse elasticity pricing rule:[
p−C′o(So(p))

]
= [So(p)+θoW ]

−1
RD′(p)

(18)
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