Under what conditions is HVDC conversion a cost effective way to increase transmission capacity conversion in an existing HVAC corridor? By: Liza Reed, M. Granger Morgan, Parth Vaishnav, Daniel Armanios Engineering & Public Policy, Carnegie Mellon University

MOTIVATION

Transmission expansion will be necessary for decarbonization

- Electrification could double electricity demand by 2050 due to industrial and transportation loads
- Renewable resources are often located in remote regions, away from population centers
- ~50% to ~120% expansion in electricity transmission capacity likely needed for decarbonization¹

Wind and Solar power potential in the US²

Siting new transmission lines in the US is increasingly difficult

- Multiple levels of conflicting regulatory bodies: local through federal
- Courts reject FERC siting power created in 2005 EPAct for "National Interest Electric Transmission Corridors"

Maximizing potential of existing corridors could speed the energy transition

- HVDC conversion can transmit 3.5X power in the existing right-of-way (ROW)
- UltraNet project in Germany using HVDC conversion to increase renewables in grid

Existing CircuitHVDC conversionHVAC optionsImage: Row req'dImage: Row $V \uparrow, 1 \uparrow$ Image: Row $V =, 1 \uparrow$ Image: Row $V =, 1 \uparrow$ Image: Row req'dImage: Row $V \uparrow, 1 \uparrow$ Image: Row $V =, 1 \uparrow$ Image: Row $V \uparrow, 1 = V \uparrow, 1 \uparrow$ Image: Row LevelHVDCHVAC Type 1HVAC Type 2Image: Voltage Level+/- 500 kV345 kV (existing)500 kVImage: Structures RowModifiedExistingModifiedRecRow ExistingExistingExistingExistingExistingImage: Row ConductorsExistingHigher perf, similar weightExisting OR Higher Perf, similar weightExisting Large	CORRIDOR UPGRADES COMPARED							
ROW req'd $V \uparrow, I \uparrow$ $V =, I \uparrow$ $V \uparrow, I =$ $V \uparrow, I \uparrow$ $V \uparrow, I \uparrow$ $V =, I \uparrow$ $V \uparrow, I =$ $V \uparrow, I \uparrow$ $V e =, I \uparrow$ $V \uparrow, I =$ $V \uparrow, I \uparrow$ $V =, I \uparrow$ $V f \downarrow$ $HVDC$ $HVAC Type 1$ $HVAC Type 2$ $VoltageLevel+/-500 \text{ kV}345 \text{ kV} (existing)500 \text{ kV}StructuresModifiedExistingModifiedROWExistingExistingExpandedROWExistingExistingExistingROWExistingExistingExpandedROWExistingHigher perf,similar weightORHigher Perf,similar weightLarge$	Existing Circuit	HVDC conversion	HVAC options					
V \uparrow , I \uparrow V =, I \uparrow V \uparrow , I =V \uparrow , I \uparrow VHVDCHVAC Type 1HVAC Type 2HVAVoltage Level+/- 500 kV345 kV (existing)500 kV5StructuresModifiedExistingModifiedReROWExistingExistingExistingModifiedExConductorsExistingHigher perf, similar weightExistingLarge	ROW req'd		Type 1	OR Type 2				
HVDCHVAC Type 1HVAC Type 2HVACVoltage Level+/- 500 kV345 kV (existing)500 kV5StructuresModifiedExistingModifiedReROWExistingExistingExpandedExROWExistingExistingExistingLargeConductorsExistingHigher perf, similar weightOR Higher Perf, similar weightLarge		V ↑, I ↑	$V =, I \uparrow V \uparrow$	$\uparrow, I = V \uparrow, I$	↑ ∖			
Voltage Level+/- 500 kV345 kV (existing)500 kV500 kVStructuresModifiedExistingModifiedRefROWExistingExistingExistingExpandedExistingConductorsExistingHigher perf, similar weightOR Higher Perf, similar weightLarge		HVDC	HVAC Type 1	HVAC Type 2	HVA			
StructuresModifiedExistingModifiedRefROWExistingExistingExistingExpandedExistingConductorsExistingHigher perf, similar weightExisting OR Higher Perf, similar weightLarge	Voltage Level	+/- 500 kV	345 kV (existing)	500 kV	5			
ROWExistingExistingExpandedExConductorsExistingHigher perf, similar weightOR Higher Perf, similar weightLarge	Structures	Modified	Existing	Modified	Re			
ConductorsExistingHigher perf, similar weightExisting OR Higher Perf, similar weightLarge	ROW	Existing	Existing	Expanded	Exp			
	Conductors	Existing	Higher perf, similar weight	Existing OR Higher Perf, similar weight	Large			

METHODS

HVDC costs dominated by converter station (scales with power), HVAC costs by **conductors (scales with distance)**

 $Cost_{total} = Cost_{power}P_{MW} + Cost_{distance}D_{miles} + Cost_{losses}$

	Ľ				
	Power Costs	Distance Costs		Electrical Losses	
	Util. & Industry est.	Industry est.		EIA wholesale \$/MWh	
HVDC	Converter Station	n/a		Ohmic, Conversion	
HVAC Type 1: Existing Corridor	Transformer	conductors		Ohmic	
HVAC Type 2: Expanded Corridor	Transformer	ROW	n/a conductors	Ohmic	
HVAC Type 3: Expanded and Rebuilt Corridor	Transformer	ROW, conductors, structures		Ohmic	

- Uncertainty included as +/- 10% cost of each capital expenditure (not losses)
- Construction/Equipment costs modeled as undiscounted, year 0 capital expenditures
- Losses modeled as NPV of 30 years of peak losses, 5% discount rate

Some HVAC types limited in achievable distance and power increase configurations

• *Delivered* power is compared: resistance losses increases with current and distance

REFERENCES

- I. Steinberg, D., Bielen, D., ... & Wilson, E. (2017). *Electrification and Decarbonization: Exploring US* Energy Use and Greenhouse Gas Emissions in Scenarios with Widespread Electrification and Power Sector Decarbonization (No. NREL/TP-6A20-68214). National Renewable Energy Laboratory (NREL), Golden, CO (United States).
- 2. MacDonald, A. E., Clack, C. T., Alexander, A., Dunbar, A., Wilczak, J., & Xie, Y. (2016). Future costcompetitive electricity systems and their impact on US CO2 emissions. *Nature Climate Change*, 6(5), 526-
- Vajjhala, S. P., & Fischbeck, P. S. (2007). Quantifying siting difficulty: A case study of US transmission line siting. *Energy Policy*, *35*(1), 650-671.
- 4. Klass, A. B., & Wilson, E. J. (2012). Interstate transmission challenges for renewable energy: A federalism mismatch.
- 5. Clerici, A., Paris, L., & Danfors, P. (1991). HVDC conversion of HVAC lines to provide substantial power upgrading. *IEEE transactions on Power Delivery*, 6(1), 324-333.
- 6. Adapa, R., Barthold, L., & Woodford, D. (2010). Technical and Economic Incentives for AC to DC line Conversion. In Study Committee B2 HVDC Preferential Subject, CIGRE General Session. Pletka, R., Khangura, J., Rawlins, A., ... & Wilson, D. (2014). Capital costs for transmission and substations: updated recommendation for WECC transmission expansion planning. *Black and Veatch PROJECT*, (181374).

400

Type 3 V ↑, I ↑,R ↓

- C Type 3
- 500 kV

placed

panded

er, heavier

RESULTS & IMPLICATIONS

- HVDC can achieve all the compared configurations
- HVAC performance primarily limited by losses
- Current (I) and resistance (R) determined by conductor manufacturer software

Convention wisdom on HVDC breakeven distances: cost effective >350 miles

• Lower cost losses favor HVAC, higher cost losses favor HVDC at short distances

Losses: \$5/MWh

HVDC conversion is technologically and economically feasible; should be included in industry and academic analyses

- Federal regulation focuses primarily on new transmission
- Not included in utility transmission planning software, limiting fair market consideration
- May impact recommendations if incorporated into decarbonization optimizations
- Lowering conversion costs (capital costs and energy losses) and increasing flexibility of HVDC operational configurations may support energy transition

Costs of permitting, regulatory approval, delay, and public response expected to **further favor HVDC**

ACKNOWLEDGEMENTS

This work has been supported by the Center for Climate and Energy Decision Making through a cooperative agreement between Carnegie Mellon University and the National Science Foundation (SES-0949710) and the Carnegie Mellon Electricity Industry Center

Carnegie Mellon Electricity Industry Center

